Algorithmic Game Theory, Summer 2018 Lecture 28 (5| pages)
Cost Sharing

Instructor: Thomas Kesselheim

Today, we will consider a problem that could also be called “fair division” but usually goes
by cost sharing. Suppose you and your friends want to take the train. You could all buy separate
tickets but, as it turns out, a group ticket is cheaper. How would you share the cost? Indeed, the
individual tickets could have different prices because some people in your group have discount
cards, don’t go the full distance, and so on. Clearly, they do not want to contribute more to the
group ticket than their single ticket.

1 Model

We assume that there are n agents N. Furthermore, there is a cost function c¢: 2V — R. Given
a subset of the agent S C N, the value ¢(.5) states the cost that the set of agents S (coalition)
would have on their own. We assume ¢(f)) = 0. In principle, costs can be negative.

Example 28.1. In the ezample for train tickets, we might have five agents. A single ticket costs
2 Euros, whereas a group ticket for all five agents costs 5 Euros. Then, ¢(S) = min{2|S|,5}.

Our goal is to come up with a cost-sharing vector ¥ (c) = (¢1(c), ..., ¥n(c)) that splits up
the cost. So, ¥;(c) € R and Y ;cn ¥i(c) = ¢(N).

Clearly, there are different ways to split up the cost. In the following, we will get to know
different such solution concepts, which are each defined by a number of constraints that the
vector has to fulfill.

2 Core

Given a cost function ¢, a cost-sharing vector ¢(c) is in the core of ¢ if it fulfills the following
requirements.

e Efficiency: > ,cny %i(c) = ¢(IV). That is, the individual costs of all agents exactly recover
the social cost.

e Stability: > ;cq®i(c) < ¢(S) for all S € N. That is, no coalition S pays more than what
they would pay if they were on their own.

Example 28.2. Let us come back to our ticket example. We might choose 1;(c) =1 for each
agent. This is clearly a core solution. Another core solution would be Y1 (c) = a(c) = 2,

P3(c) =1, Y4(c) = 5(c) = 0. However, 1(c) =3, ¥a(c) =2, ¥3(c) = ... =15(c) =0 is not in
the core because stability is violated for {1} and {1,2}.

While these conditions are desirable generally, the core is sometimes empty, depending on
the cost function. For example, consider n = 3, ¢(S) = {@W In the language of tickets, this
means that the only available tickets are for groups of up to two, which each cost 1 Euro.

Observe that now for ¥ (c) to be in the cost, we would need

P1(e) + a(c) + Ps(c) = 2

Y1(c) +ha(c) <1
P1(e) +3(c) <1
Pa2(c) +3(c) <1

The inequalities add up to 291 (c) + 2¢2(c) + 23(c) < 3, so there is no solution to this system
of inequalities.

Algorithmic Game Theory, Summer 2018 Lecture 28 (page 2 of)

3 Shapley Value

The Shapley value is a different approach to cost sharing. Again, there are a couple of conditions
that the vector ¢ (c) should fulfill respectively different vectors for different cost functions.

e Symmetry: If for two agents ¢ € N, and j € N for all S C N with 4,5 ¢ S we have
c(SU{i}) =c(SU{j})), then ¢;(c) = ¥;(c). That is, if nothing changes if i and j swap
their roles, then they have to get the same cost share.

e Dummy: If for an agent ¢ € N for all S C N we have ¢(S U {i}) = ¢(S), then ¢;(c) = 0.
e Efficiency: Y. ¢i(c) = ¢(N).

e Additivity: For any two cost functions ¢ and ¢/, let ¢ + ¢’ be their pointwise sum. For all ¢
and ¢ and all i € N, we have 1;(c +) = ¢;(c) + i ().

We will show that there is a unique choice of cost-share vectors that fulfills these properties.
Our first step is to define a vector that adds agents one after the other and measures the
respective cost increase. We add the agents in an arbitrary but fixed order. To this end, we use
permutations m: N — N of the agents and define

oile,m) = c({r(1), ..., 7(k)}) — e({m(L),...,m(k —1)}) , where k = 771(3) .

Example 28.3. We come back to our running example, in which a single ticket is 2 Furos and
a group ticket is 5 FEuros.

For m with (i) = i, we have ¢1(c,m) = @a(c,m) =2, p3(c,m) =1, pa(c,m) = p5(c, 7) = 0.
Clearly, this does not fulfill the symmetry condition yet.

To make the symmetry condition fulfilled, we take the average over all permutations w. To
this end, let denote by S,, the set of all permutations 7: N — N. Recall that |S,,| = n!. Define
agent i’s Shapley value under cost function c as

o= 3 il (1)

’ WGSn

Theorem 28.4. The vector i(c) defined by Equation (1)) fulfills the symmetry, dummy, efficiency,
and additivity condition.

Proof. For the dummy, efficiency, and additivity condition, we can observe that for any per-
mutation 7, the vector ¢(c,) already fulfills the respective property. This translates to the
respective property for ¢ (c). For completeness, we provide the respective calculations below.

The more interesting question is the symmetry condition. We will use that for each permu-
tation 7, there is exactly one permutation (/) that swaps the images of 7 and j in w. That
is,

r(G) ifl=i
a0y =S n(i) ifl=j
m(¢) otherwise

Now, observe that if ¢(S U {i}) = c¢(SU{j}) for all S with i,j ¢ S, then
pi(e,m) = ¥j (67 ﬂ-(i’j)) :

As every permutation appears exactly once as 7(») in S,,, we have

90) = 21 3 i) = = 3 gile,m) = dhile) -

" mESK " wESh

Algorithmic Game Theory, Summer 2018 Lecture 28 (page 3 of)

In more detail, for the dummy condition, we observe

vile,m) =c({m(1),...,7(k)}) —c({m(1),...,m(k—1)}) =0

and therefore

nglcw—O

7r€Sn

For the efficiency condition, we have

S gilem) = 3 e({m(D), ., 7B} = 3 e (L), . (k= 1)}) = e(V) — e(0) = e(N)
k=1

i=1 k=1
by a telescoping sum and therefore

Y= Y Y wilem) = Y eN) =e(N)

=1 " wES, i=1 ' weS,

For the additivity condition, we have

pilc+d,m)=c({r),...,7(k)}) — c({m(1),...,m(k —1)})
+d({r(1),...,7(k)}) = {r(1),...,7(k = 1)})

= ‘Pi(caﬂ) + (Pi(clﬂr) .

This gives

Pi(e+) Z(pzc+c7r Zcpzc7r+—24pzc7r wile) + () . O

! TESH : TESH ! TESH

4 Uniqueness of the Shapley Value

Interestingly, this is the only choice of cost vectors that fulfills these conditions. So, our conditions
fully characterize the way of sharing the cost. Recall that this is different in the definition of the
core, where there might be multiple solutions (or none).

Theorem 28.5. The vectors ¢(c) defined by Equation (1)) are the only ones that fulfills the
symmetry, dummy, efficiency, and additivity condition.

Lemma 28.6. For T'C N, let cp be the cost function such that ¢(S) =1 if S D T, 0 otherwise.
That is, for a € R, - cp is the function that has value « if all of T appear in S, otherwise it
is 0. Then, for any fixzed o and T, the unique ¥ (acr) that fulfills the symmetry, dummy, and
efficiency condition is

o -
e _)m ifieTl

vile-er) {0 otherwise
Proof. 1t is easy to see that the v function defined this way fulfills the mentioned conditions.
So, we only have to show it is the only one.

For i ¢ T, we have to have ¢;(acr) = 0 by the dummy condition.

So, using the efficiency condition, we have to have Y,cp ¥;(acr) = a.

Finally, by the symmetry condition, we have to have ¢;(acr) = ¥;(acy) for all 4,5 € T.
Therefore, 1;(acr) = % forallieT. O

Lemma 28.7. For every cost function c, there is a unique choice of values (r)rc N 129, o € R
for all T" such that ¢ = Y pc n ppp TCT-

Algorithmic Game Theory, Summer 2018 Lecture 28 (page 4 of)

co0o oo
R B R S
OO =
O = 0 0
=) D e

Figure 1: Structure of constraint matrices in proof of Lemma [28.

Proof. We have to choose (ar)7c n, 749 such that for all S C N, we have c(S) = > ey rzp arer(S).
Recall that ¢p(S) = 1 if and only if S O T. So, we can rewrite the right-hand side as

ZTQN,T;A@ arer(S) = ZTQS,S;A@ ar.
That is, we get system of linear equations stating that

Z ar=c¢(S) forallS CN,S#0 .
TCS,S#0

Note that we have 2" — 1 variables and just as many constraints. So, it suffices to show that the
system always has a unique solution, which proves the lemma.

To see this most clearly, sort the variables and constraints by increasing |T| or |S| respectively.
On the diagonal of the constraint matrix, every entry is 1 because these are the entries for which
S =T. Below the diagonal, the set T' has either smaller size then .S, so the entry is 0, or they
have equal size but are distinct, in which case the entry is 0 again. That is, we have a matrix
with 1 on the diagonal, 0 below it, and arbitrary entries above it (see Figure . Following the
Gaussian algorithm, we see that there is always a unique solution. O

Now we are ready to prove Theorem [28.5] by decomposing the function ¢ to a sum of arer
and using the additivity condition.

Proof of Theorem[28.5. Note that we only have to show that the solution is unique. To this
end, we use the unique decomposition ¢ = pc y 72p @rer according to Lemma
By additivity, we have to have

Yi(c) = Y arer| = Y. ilarer) .

TCN,T#0 TCN,T#0

We have ¢;(arer) = ‘f‘TT' if € T and 0 otherwise by Lemma [28.6, That is,

vil)= Y diarer)= Y TE

TCN,T#0 TCN,icT T

As the vector (o) ey 1+ is unique by Lemma this is the unique solution. As the definition
in Equation also fulfills the same conditions, they have to coincide. O

5 Outlook

The game we considered today is a cooperative game with transferable utilities. Usually, you will
see it defined by values rather than costs but as they are arbitrary reals one translates to the
other.

An interesting question is when a core solution exists. Under some conditions regarding the
cost functions ¢, the Shapley value is in the core. Also, we did not discuss how to compute any
of this. The way we defined the Shapley value, it takes ©(n!) time to compute. By exploiting
symmetries, it can be reduced to ©(2").

Algorithmic Game Theory, Summer 2018 Lecture 28 (page 5 of)

Finally, one should remark that questions such a house allocation and stable matching are
cooperative games with non-transferable utilities. The question is always to find a solution that
is stable against possible coalitions.

6 Further Reading

e Chapter 12 in the Karlin/Peres book

e Chapter 15 in the AGT book

	Model
	Core
	Shapley Value
	Uniqueness of the Shapley Value
	Outlook
	Further Reading

