Algorithmic Game Theory, Summer 2018 Lecture 23 (b pages)

Allocations without Money

Instructor: Thomas Kesselheim

We have learned quite a bit about mechanism design with money. The general theme was to set
rules of a game so that everybody is happy with what we do. Today, we will turn to similar
questions without money. Often, we face agents behaving strategically but imposing payments is
infeasible or would be unethical.

1 House-Allocation Problem

We start with a simple problem that has a lot of similarities with the auction problems we
considered before. There are n agents N. Each of them brings an item to an exchange. We
refer to the items as houses. Agents might prefer other houses to the one they live in. Our goal
is to (possibly) reassign the houses so that all agents want to participate and are reasonably
satisfied with the outcome. That is, we look for an allocation w: N — N that is a one-to-one
correspondence (or a permutation) between agents and houses. After the reassignment, agent ¢
gets the house that used to belong to agent (7).

In settings with money, we always expressed agents’ preferences in terms of monetary units
and called this valuation. In a world without money, this makes no sense. Therefore, instead
each of the agents now has a complete preference list without ties over the houses. This is a total
order on all agents’ houses, including his own. It may be arbitrary and need not be consistent
with other agents’ preferences. We write a > b > c if an agent prefers a’s house over b’s but likes
both better than ¢’s.

Let us start with an almost trivial example. There are three agents a, b, and ¢. Each of
them likes the clockwise neighbor’s house better. So, this is clearly a good allocation because all
agents get their most preferred house.

agents houses

Usually, exchanges will not be this smooth. Consider the following example, in which only
the second agent’s preference change.
agents houses

This allocation is what we call unstable. Agent b only has to convince agent a to leave the
exchange and swap their houses outside. Agent a doesn’t mind because he still gets b’s house
but b likes a’s house better than ¢’s.

Let us define this property formally.

Definition 23.1. A subset of the agents A C [n] is a blocking coalition of an allocation w, if
there is an allocation o: A — A only involving the agents in A such that:



Algorithmic Game Theory, Summer 2018 Lecture 23 (page 2 of )

1. No i € A prefers n(i) over o(i) and
2. At least one i € A prefers (i) over w(i).

So, in other words, a blocking coalition would rather reassign the houses among themselves:
It would make nobody less happy but somebody would be happier than in allocation .

Definition 23.2. We call an allocation stable if there is no blocking coalition.

We are interested in finding stable allocations because they ensure that all agents actually
benefit from taking part in the exchange. Nobody would be better off by asking a couple of
friends to run a secondary exchange.

2 Top Trading Cycle Algorithm

Interestingly, there is always a stable allocation and it can be found using a very elegant
algorithm.

e Initially set N' = N
e While N’ # ()

— Construct a directed graph on vertices N’. Each vertex ¢ has one outgoing edge to
the owner of his preferred house among all houses owned by N’. (This can also be i
himself. In this case, there will be a loop at vertex i.)

— Find an arbitrary directed cycle in this graph. To each 7 in this cycle, assign the
house owned by i’s successor in the cycle.

— Remove all agents in the cycle from N'.

To make the algorithm well-defined we need that there always is a directed cycle in the
constructed graph. Fortunately, this is an easy observation. (There might be multiple, but this
is no problem.)

Lemma 23.3. Every directed graph without sinks (that is, every vertex has an outgoing edge)
has a cycle.

Proof. Start from any vertex and follow an arbitrary outgoing edge. While we see new vertices,
keep following outgoing edges. At some point, we have to come back to a vertex we have been
to before because there are only finitely many vertices. Then a cycle has been completed. [

Let us come back to the initial example with the following preferences:
a:b>c>a, b:a>c>b, c:a>c>D

The graph in the first iteration is

In the second iteration, it is only the vertex ¢ with a self-loop.



Algorithmic Game Theory, Summer 2018 Lecture 23 (page 3 of )

2.1 Stability of the Allocation

Next, we show that the allocation we compute using this algorithm is actually stable, meaning
that there is no blocking coalition.

Theorem 23.4. The allocation w outputted by the Top Trading Cycles Algorithm is stable.

Proof. Suppose the allocation is not stable. Then, there has to be a coalition A C N and an
allocation o: A — A within A with the following property. Denote by A the set of agents
i € A for which (i) # o(i). We have to have A # () and all agents i € A prefer (i) over
7(i). (Here we use that there are no ties in the preferences.)

There has to be an iteration of the algorithm in which an agent from A is removed from
the set N’ for the first time. Let us denote N* the state of N’ before the allocation.

Furthermore, we observe that o(i) € N*. The only way that o(i) could not be in N* is that
it is part of a cycle in A\ A that already got removed. Then, (i) would have a predecessor on
this cycle, meaning that o (i) = 7(i') = (i) for some ¢’ # i. This is a contradiction.

By definition, 7 (7) is i’s favorite house in N*. As o(i) € N*, it is a contradiction that i
prefers o (i) over 7(1). O

2.2 Uniqueness of the Stable Allocation

Quite surprisingly, the stable allocation is unique. That is, if we took a different cycle in the
graph or even a totally different algorithm, the result would still be the same.

Theorem 23.5. The allocation w outputted by the Top Trading Cycles Algorithm is the unique
stable allocation.

Proof. Let 7’ be any stable allocation. Furthermore, let N; be the set of agents who are allocated
in the ¢-th iteration of the algorithm. We will show that (i) = #/(4) for all i € N; for all ¢ by
induction on t.

The base case of our induction is ¢ = 1. By definition all i € N; get their favorite houses.
Furthermore o: Ny — N; with o(i) = m(¢) is a feasible allocation within N; because 7 is derived
from a cycle in Ny. So, if /(i) # (i) for any i € Ny, then Nj is a blocking coalition.

For the induction step, consider any ¢ > 1. By induction hypothesis, we already know that
7' (i) = (i) for all i € Uy, Ny and that this allocation is among agents and houses who are all
in Uy o, Ny. This means that both m and 7’ have to reallocate houses within N' = (J,~, Ny. So,
pretend agents and houses in N\ N’ never existed in the first place. Then, the algorithm would
first reassign houses within N;. This is exactly what we discussed in the base case. O

2.3 Dominant-Strategy Incentive Compatibility

Not only is there exactly one stable allocation, the agents also have no incentive to misreport
their preferences: No agent gets a better house by reporting a preference list other than the
true one, regardless of what the other agents do. That is, the mechanism is dominant-strategy
incentive compatible. (In the context of mechanism design without money, this property is also
called strategyproofness.)

Theorem 23.6. No agent can improve his allocation by misreporting the preference list.

Proof. Fix some agent ¢ and the other agents’ preferences. Furthermore, let N; be the set of
agents who are allocated in the t-th iteration of the algorithm. Let t* be the iteration in which
agent 1 is allocated a house if he reports the true preference list.

By misreporting the preferences, agent 7 could be served in an iteration before t*. However,
he will not get any of the houses from (J;;+ IV; because there is no incoming edge from any
of these vertices. That is, no matter what he reports, his allocation will be one of the houses
in g4+ Ni. By definition, his house when reporting the true preferences is exactly the most
preferred one among these. O



Algorithmic Game Theory, Summer 2018 Lecture 23 (page 4 of )

3 Kidney Exchange

Possibly the most compelling motivation for mechanism design without money are organ
donations. There are good reasons why it is forbidden to ask for or pay money for these.

You may have heard of examples of living organ donors. For example, people can donate
one of their kidneys to save a relative’s life. For example, Germany’s president Frank-Walter
Steinmeier donated one of his kidneys to his wife in 2010. Such a donation requires the tissues
to be compatible. But what if all your relatives who would be willing and able to donate are
incompatible? Ideally, you would find another patient/donor pair that has the same problem
but the kidneys are compatible with the respective other patient. You could even extend this to
a chain of exchanges.

Indeed, Roth, Sénmez, and Unver proposed in 2004 to use the Top Trading Cycles Algorithm
for this problem. Each patient/donor pair becomes an agent. An agent’s preferences express
how likely it is that the other agent’s kidney is compatible. Then, we get a cycle of kidneys to
be transplanted.

Unfortunately, there is one flaw in this argument: All surgeries have to take place simultane-
ously, close to each other. The reason is that nobody can be forced to donate an organ. So, if
you are a donor and your relative that brought you in the exchange already got a kidney, you
could simply walk away and this way break the cycle.

For this reason, one has to keep the cycles short. We will now consider a problem in which
the cycles are limited to length 2. Also, the complete preference list is replaced by a simpler
model.

4 Pairwise Kidney Exchange by Matching

An easier approach to kidney exchange relies on finding a matching in a graph. The agents (that
is, patient-donor pairs) are vertices V in a graph. There is a set of (undirected) edges E on
V indicating the possible pair-wise exchanges. Our goal is to compute a maximum-cardinality
matching M C F.

Let E; denote the set of agent ¢’s neighbors according to £. Note that every agent can
deny the surgery without stating a reason. Therefore, effectively, they report edge sets F; C F;.
We would like our mechanism to ensure that no agent can get himself into the matching by
misreporting F; # FE;. That is, reporting F; = E; should be a dominant strategy; the mechanism
should be dominant-strategy incentive compatible.

e Collect a report F; from every agent 4.

o Let ' ={{i,j} | i€ Fj,j € F;} be the set of reported edges.

e Let My denote the set of maximum matchings on (V, F).

e For i =1,...,n in any order that is independent of the reports

— Let Z; denote the matchings in M;_; that match vertex 1.
— If Z; # 0, let M; = Z;; otherwise let M; = M;_1.

e Return an arbitrary matching in M,.

Observe that there might be multiple matchings in M,,. However, they all match the same
agents: Exactly the ones for whom Z; # .

Theorem 23.7. Given any reports of the other agents, if agent i gets matched when reporting
any F; C E;, he also gets matched when reporting E;.



Algorithmic Game Theory, Summer 2018 Lecture 23 (page 5 of )

Proof. First of all, observe that there are two cases that we distinguish. It might be that under
report E; the maximum matching is strictly larger than under reports F;. Then, ¢ is matched in
every maximum matching when reporting E; and therefore always gets matched.

The other case is that the size of the maximum matching does not change. Now let Zy, ..., Z,
be the sets generated if agent i reports F; and Zj),...,U), if he reports E; C F;. We may have
Zy C Zj, for all t' <'i. In this case, Z] D Z; # () and we are done.

Otherwise, there has to be a point ¢ at which Z; = () but Z, # (. This can only happen
because Z; contains matchings that match i. Therefore, for all ¢ > ¢, Z; only contains matchings
that match ¢ and so we are done. O

Further Reading

e Section 10.4 in the Karlin/Peres book
e Section 10.3 in the AGT book

e Tim Roughgarden’s lecture notes http://theory.stanford.edu/~tim/£f13/1/19.pdf
and lecture video https://youtu.be/zV6yH3-AdEg7t=58m4s on House Allocation

e Tim Roughgarden’s lecture notes http://theory.stanford.edu/~tim/f13/1/110.pdf
and lecture video https://youtu.be/NT07sILhsv4 on Kidney Exchange

e Alvin E. Roth, Tayfun Sénmez, and M. Utku Unver. Kidney Exchange. Quarterly Journal
of Economics, 119(2):457-488, 2004. (Top Trading Cycles for Kidney Exchange)

e Alvin E. Roth, Tayfun Sénmez, and M. Utku Unver, Pairwise Kidney Exchange, Journal
of Economic Theory, 125:151-188, 2005. (Matching for Kidney Exchange)


http://theory.stanford.edu/~tim/f13/l/l9.pdf
https://youtu.be/zV6yH3-AdEg?t=58m4s
http://theory.stanford.edu/~tim/f13/l/l10.pdf
https://youtu.be/NT07sILhsv4

	House-Allocation Problem
	Top Trading Cycle Algorithm
	Stability of the Allocation
	Uniqueness of the Stable Allocation
	Dominant-Strategy Incentive Compatibility

	Kidney Exchange
	Pairwise Kidney Exchange by Matching

