Algorithmic Game Theory, Summer 2018 Lecture 18 (4| pages)
Simple Mechanisms for Combinatorial Auctions

Instructor: Thomas Kesselheim

Today, we continue our discussion of simple, non-truthful mechanisms. We consider combi-
natorial auctions, so there are m items M, which can each be allocated at most once. Bidders
have valuation functions v;: 2M — R>o.

A mechanism M = (f,p) defines a set of bids B; for each player i € N and consists of an
outcome rule f: B — X, where B = By X By X --- X By, and a payment rule p: B — R%.

Last time, we introduced the definition of a smooth mechanism. -

Definition 18.1 (Smooth Mechanism, simplified version). Let A\,u > 0. A mechanism M is
(A, )-smooth if for any valuation profile v € V  for each player i € N there exists a bid b} such
that for any profile of bids b € B we have

S wibi,bo) = A-OPT() — 1Y palh) -

ieN ieN
It is easy to see that (A, u)-smoothness implies that the Price of Anarchy for pure Nash
equilibria is at most % This proof also generalizes to (coarse) correlated equilibria. In a
more complex argument, we were also able to show that the bound also holds for Bayes-Nash
equilibria. Given these results, it is enough to show smoothness of mechanisms to bound the
Price of Anarchy for all equilibrium concepts that we introduced so far. Interestingly, all results
that we cover today were discovered before the smoothness result was discovered, but the basic
arguments were already present in the original publications.

1 Item Bidding

We first consider a truly simple, indirect mechanism. Instead of reporting complex functions
oM _y R, the bidders now simply report a single bid b; ; for each item j. Each item is sold in
a separate first-price or second price-auction. That is, item j is assigned to the bidder ¢ with the
highest bid b; ;. He has to pay b; ;.

A bidder can potentially win multiple items, even if he only wants one. Recall unit-demand
valuations: These are functions v; such that there are v; j € R>¢ such that v;(S) = maxjecgv; ;.
If, for example, v; 1 = ... = v; ,», = 1, then bidder ¢ has a value of 1 as long as he receives an
item, no matter which. There is no way to express this in a bid. Therefore, this is not a direct
mechanism and it cannot be truthful. However, its Price of Anarchy is bounded by 2.

Theorem 18.2. For unit-demand valuations, item bidding with first-price payments is (%, 1)-
smooth.

Proof. We have to devise the deviation bids b; for all bidders. These bids may depend on the
valuations v but not on the bids. Consider the welfare-maximization allocation on v. Let j; be
the item that is assigned to bidder ¢ in this allocation. If i does not get any item, set j; to L.
We now set b} ; = “4 if j = j; and 0 otherwise. That is, in the deviation bid, each bidder
bids half his value on the item that he is supposed to get.
Given any bid profile b, bidder ¢’s utility after deviating is vl% unless another bidder bids at

vié“ for item j; in b. Therefore
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If we take the sum over all bidders ¢, then

o (67, bi) o) = 3 = = 3 maxbyy, -

1EN 1eEN 1EN

Observe that Y ;cn vi;, = OPT(v) because of the way we defined j;. Furthermore, we have
dien maxy by g < 3% .oy maxy by j = 37, n pi(b) because every item is counted at most once:
For each item j there is at most one ¢ such that j = j;. That is,

S il (t,b-0),0) 2 SOPT() = X pilh) |

iEN 1EN
which is exactly (1,1)-smoothness. O

So, immediately we get that the Price of Anarchy for pure Nash equilibria is at most 2.

2 A Greedy Mechanism

Instead of selling items individually, one can also apply a smarter allocation algorithm and use
a direct mechanism. We will now consider a mechanism based on the Greedy-by-Sqrt-Density
algorithm for combinatorial auctions. We introduced it as algorithm for single-minded bidders.
That is, each bidder is only interested in a single set of items. Under these circumstance, it can
be turned into a truthful mechanism. Beyond this single-parameter domain, it cannot be turned
into a truthful mechanism. However, as we will show, it can be turned into a mechanism of
reasonable Price of Anarchy.

We assume that bidders report functions b;: 2 — Rsq. (To ensure polynomial running
time, only a polynomial number of bundles should have a positive value.) On the pairs (i,.5)
we run the greedy allocation rule. Each bidder gets only one such bundle S. If the mechanism
wanted to allocate not only S to ¢ but also S, it would have to select the pair (i, S U S’).

We combine this with a first-price payment rule: If bidder 7 gets set .S, then his payment is
exactly his bid on this set b;(.9).

First-Price Greedy Mechanism for Combinatorial Auctions

1. Collect bids b.

bi(S)

2. Sort the player-bundle pairs (7,.5) by non-increasing score =k

3. Go through the sorted list and assign S to player ¢ unless

(a) player i has already been allocated a bundle or

(b) one or more of the items in S has already been allocated.
4. Charge each player ¢ his bid b;(.S) on the bundle S he is allocated.

Theorem 18.3 (Borodin and Lucier, 2010). The first-price greedy mechanism for multi-minded
CAs is (1/2,0(y/m))-smooth.

Proof. Let (X7,...,X}) be an allocation that maximizes social welfare. That is, OPT(v) =
>ien Vi(X5). For each player i € N let b) be the single-minded declaration for set X at value
v;(X)/2. So, by bidding b}, bidder ¢ only tries to win the set that he is allocated in the social
optimum.

Consider an arbitrary bid profile b. We know that the algorithm is monotone on single-minded
bids. That is, if bidder ¢ reports that he is only interested in set .S, then there is a smallest bid
with which player ¢ wins bundle S against bids b_;. Call this the critical bid 7;(S,b_;).
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In particular, bidding b; against b_;, bidder ¢ may or may not win the set X;. If he wins
then u; ((b7,b_;),vi) = vi( X)) —vi(X[)/2 = v;(X})/2. If he loses, then the critical bid is at least
vi(X})/2. So in either case,

1
ul(bf, b_l‘) > §UZ(XZ*) — Ti(ng, b_i> .
Summing over all players 7 € N' we obtain
Z ui (b}, b_;) > Z (2 — i(X] ,b_i)> =5 OPT(v) - Z (X7, b)
ieN ieN ieN
Below, we will show the following lemma.

Lemma 18.4. Fiz bids b € B. Let f(b) be the allocation chosen by the greedy mechanism for
bids b and let X* be another feasible allocation. Then,

D oT(X] ) <O(Wm) Y bi(fi(b) -

ieEN ieN

Once we have this lemma, we get

. 1
> ui(bf,b_;) > 3 OPT(v) — O(vm) - Y _ bi(fi(b))
ieN ieN
1
= 5 -OPT() = O(Vm)- 3 pi(h)
ieN
where the last step uses that the mechanism is a first-price mechanism. ]

Note that apart from Lemma this proof is actually pretty generic. It looks exactly like
the smoothness proof for a first-price auction and uses hardly any property of the mechanism.
It still remains to prove Lemma which indeed relies on the mechanism using a greedy rule.

Proof of Lemma[18.4 Let € > 0. For all 4, let b} be the single-minded declaration for set X at
value 7;(X,b_;) — €. Let b} be the point-wise maximum of b; and b}. A crucial property of the
greedy algorithm is that the allocation it chooses on profile b’ is the same as on b. The reason
is that all introduced new bids are below the respective critical bids. Some pairs (i, S) move
towards the front in the sorted list. However, none of them moves beyond the point at which
it gets accepted. So, its presence does not have any influence of the algorithm. So, formally,
f(b) = f(V'). Besides, if b;(S) # bf(S) for a set S, then bidder i does not get set S in f(b) or
7).
That is,
ST b)) = 3 bi(fi() = S HHD)) -
ieN ieEN ieN
Now we use the fact that the algorithm is an O(y/m)-approximation. As X* is a feasible

allocation, we have
1
bi(fi(v)) = bi(X7) -
= o
By definition of b}, we also have

Z V(X)) = Z max {b;(X;), 7:(X;,b—;) — €} > Z(Ti(X;k,b_i) —€) = Z Ti( X[, b_;) — ne .

ieN ieN ieN ieN

So, in combination

1 *
i%\:/bi(fi(b)) > o %n(Xi,bw—ne :

This holds for all € > 0. The claim follows by taking the limit as ¢ — 0. O
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3 Second-Price Auctions

Our results so far were for generalization of the first-price auction. Maybe it would be more
natural to generalize the second-price auction. In the case of item bidding this would mean that
each item is sold in a separate single-item auction. For the greedy mechanism, we could charge
every player the respective critical bid. These are particularly interesting mechanisms because
they are truthful in special cases. So, giving a Price-of-Anarchy analysis would show that they
are robust beyond the truthful dominant-strategy equilibrium.

Unfortunately, the techniques that we have learned up to now are not enough to bound the
Price of Anarchy even for the second-price auction. This is for a good reason: Without further
assumptions, it is unbounded.

Observation 18.5. Consider a single-item second-price auction with two bidders of values
v1 = 1, va = € for some small €. Now by =0, by =1 is pure Nash equilibrium. Its social welfare
is € compared to optimal social welfare 1.

The reason why we get this bad equilibrium is that overbidding is only weakly dominated. So,
bidders cannot increase their utility by overbidding but this does not mean that it decreases.
This is also true in general item bidding with second-price auctions.

Theorem 18.6. Consider a pure Nash equilibrium b of item bidding with second-price payments
and unit-demand bidders. Let X, ..., X, be the resulting allocation. If for all bidders i we have
>jex,; bij < vi(X;) (weak no-overbidding), then 3= n vi(X;) > $OPT(v).

Proof. We mostly follow the steps in the proof of Theorem [I8.2] Again, we devise a deviation
bid b] for every bidders. Consider the welfare-maximization allocation on v. Let j; be the item
that is assigned to bidder ¢ in this allocation. If ¢ does not get any item, set j; to L.

This time, we set b} ; = v; ; if j = j; and 0 otherwise.

Bidder 4’s utility in (b],b_;) is v; j, — maxy; by j, if he wins the item, otherwise it is 0 but
in this case max;»; b; j, > v; j,. That is, we always have

*
ui((b;,b-i),v:i) > vjj, — max by g, 2 vijg, — maxby,j -

By the equilibrium property u;(b, v;) > w;((b},b—i),v;). So, taking the sum over all bidders
SWU(b) Z Z ui(b, UZ‘) Z Z Ui,ji — Z m;/xx bi’,ji .
iEN iEN ieN '
Again, ey Vi, = OPT(v) and )7,y maxy by j, < > jen max; by ;.
However, now ¢, max; b; ; does not necessarily have to do anything with the payments.

For every item max; b; ; may be a lot higher than what the winner has to pay for it. Here, the
weak no-overbidding assumption comes to our rescue. We can write

Z maxbi,j = Z Z bi’j S Z ’L)Z(Xz) = SWv(b) .
jemM ' ieN jeX; ieN
This gives us
SW,(B) > OPT(v) — SW,(b) |
which implies our claim. O

Of course, there is also a generalization of this proof to other equilibrium concepts and a
more general form of smoothness called weak smoothness.
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