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Bayes-Nash Equilibria
Instructor: Thomas Kesselheim

We have spent the past weeks discussing dominant-strategy incentive compatible (truthful)
mechanisms. In these mechanisms, for every agent it is always a dominant strategy to report the
true value. A classic example is the second-price auction. Today, we will broaden our perspective:
What statements can we make if the mechanism is not truthful? For example, if it is first-price
auction?

A natural approach would be to consider Nash equilibria. For example, given tie breaking in
our favor, the first-price auction has a pure Nash equilibria, in which everybody bids their value
except for the bidder of highest value. She bids the second-highest value. The weakness of this
approach is that it requires full information: Essentially, the bidders have to know the other
values.

Today, we will get to know an equilibrium concept for incomplete information. The players
know their own values but only have a prior belief about the other players’ values.

1 Bayes-Nash Equilibria
We will assume that bidder i’s value vi ∈ Vi is drawn independently from some distribution Di.
These distributions are known to all bidders. A bidder chooses a bid bi depending on the own
valuation vi, not knowing v−i but only the distributions. We model this by saying that bidder i
chooses a bidding function βi : Vi → Bi, mapping valuations to bids. Whenever the valuation is
vi, the bidder bids βi(vi). For example, truthful bidding is represented by βi(vi) = vi.

Definition 16.1 (Bayes-Nash equilibrium). A (pure) Bayes-Nash equilibrium (BNE) is a profile
of bidding functions (βi)i∈N , βi : Vi → Bi, such that for all i ∈ N , all vi ∈ Vi, and all b′i ∈ Bi

Ev−i∼D−i [ui(β(v), vi)] ≥ Ev−i∼D−i

[
ui((b′i, β−i(v)), vi)

]
,

where β(v) = (β1(v1), . . . , βn(vn)).

So, we take the perspective of a single bidder. She knows her own vi. The other values
v1, . . . , vi−1, vi+1, . . . , vn are drawn from D1, . . . ,Di−1,Di+1, . . . ,Dn respectively. The bidding
function now tells her to bid βi(vi). In an equilibrium, no other bid should give a higher utility.
The other bidders keep playing according to the respective bidding functions. This, in particular,
means that no other bidding function yields a higher expected utility when also taking the
expectation over vi.

Example 16.2. In a truthful mechanism, (βi)i∈N with βi(vi) = vi for all i ∈ N and all vi ∈ Vi
is a Bayes-Nash equilibrium. It is not necessarily the only one.

Example 16.3. Consider a first-price auction with two bidders, in which Di is the uniform
distribution on [0, 1]. Let us show that (βi)i∈N with βi(vi) = 1

2vi for all i ∈ N is a Bayes-Nash
equilibrium.

Observe that for symmetry reasons, it is enough to only consider bidder 1. Fix any v1 ∈ V1
and let us write out the expected utility when bidding some arbitrary b′1 ∈ B1. The expectation is
over bidder 2’s value, respectively the bid.

Ev2∼D2

[
u1((b′1, β2(v2)), v1)

]
=
∫ 1

0
u1((b′1, β2(v2)), v1)dv2 =

∫ 1

0
u1

((
b′1,

v2
2

)
, v1

)
dv2 .
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Here, we used that β2(v2) = v2
2 . Now, what is the value of u1

((
b′1,

v2
2
)
, v1
)
? If b′1 < v2

2 , then it
is 0, if b′1 > v2

2 , then it is v1 − b′1. Therefore if b′1 ≤ 1
2 then

Ev2∼D2

[
u1((b′1, β2(v2)), v1)

]
=
∫ 2b′1

0
(v1−b′1)dv2 +

∫ 1

2b′1
0dv2 = 2b′1(v1−b′1) = v2

1
2 −2

(
b′1 −

v1
2

)2
.

We see that that the last term is maximized exactly for b′1 = v1
2 , so for all v1 and b′1

Ev2∼D2

[
u1

((
v1
2 , β2(v2)

)
, v1

)]
≥ Ev2∼D2

[
u1((b′1, β2(v2)), v1)

]
,

which is exactly the equilibrium condition.

2 Symmetric Bayes-Nash Equilibria of First-Price Auctions
We will derive a generalization of this equilibrium for arbitrary numbers of players n and arbitrary
continuous, identical distributions D1, . . . ,Dn.

We will assume that for all i ∈ N and all x ∈ R≥0

Pr [vi ≤ x] = F (x) =
∫ x

0
f(t)dt .

We also write G(x) for (F (x))n−1.
Let us assume that there is a Bayes-Nash equilibrium (βi)i∈N in which all functions are

identical and differentiable. Then we have for all y ∈ R≥0

Ev−i∼D−i [ui((y, β−i(v)), vi)] = (vi − y)Pr

∧
j 6=i

βj(vj) < y

 = (vi − y)
∏
j 6=i

Pr [βj(vj) < y]

If we let φ denote the inverse of βi, then, Pr [βj(vj) < y] = Pr [vj < φ(y)] = F (φ(y)) as βj = βi.
So we get

Ev−i∼D−i [ui((y, β−i(v)), vi)] = (vi − y)
∏
j 6=i

F (φ(y)) = (vi − y)G(φ(y)) .

If βi(vi) = y, then y has to be a local maximum of the above function. That is

d
dy (vi − y)G(φ(y)) = 0 .

The derivative can be calculated by standard rules

d
dy (vi − y)G(φ(y)) = −G(φ(y)) + (vi − y)G′(φ(y))φ′(y) .

By the inverse function theorem, we have φ′(y) = 1
β′i(φ(y)) . That is, if βi(vi) = y then

−G(φ(y)) + (vi − y)G′(φ(y)) 1
β′i(φ(y)) = 0 .

Replacing all occurrences of y by βi(vi) (so φ(y) = vi), we get

−G(vi) + (vi − βi(vi))G′(vi)
1

β′i(vi)
= 0 ,

or equivalently
β′i(vi)G(vi) + βi(vi)G′(vi) = viG

′(vi) .
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This has to hold for all vi ∈ R>0. Observe that the left-hand side is exactly the derivative of
βiG. So, all solutions to this equation have the form

βi(vi)G(vi) =
∫
viG

′(vi)dvi + constant .

As βi(0) = 0, we have
βi(vi) = 1

G(vi)

∫ vi

0
tG′(t)dt .

One can verify that this is indeed an equilibrium the same way we did this in Example 16.3.
And, as we have seen, it is necessarily the only symmetric equilibrium.

3 A Welfare Bound for First-Price Auctions
Let us have a closer look at the symmetric equilibrium that we have just derived. We observe
that for any distribution the functions βi are always strictly increasing. This means, whenever a
bidder has a higher value, the bid will also be higher. Consequently, always the bidder with the
highest value wins.

Observation 16.4. In the symmetric Bayes-Nash equilibria (βi)i∈N of a first-price auction with
identical distributions for all v ∈ V∑

i∈N
vi(f(β(v))) = max

i∈N
vi .

If distributions are different, the equilibrium is usually asymmetric and it is not always true
that the bidder with the highest value wins the item. For example, if v1 is uniformly distributed
on [0, 4

3 ] and v2 is uniformly distributed on [0, 4
5 ], then the unique Bayes-Nash equilibrium is

β1(v1) = −
1−

√
1 + v2

1

v1
and β2(v2) =

1−
√

1− v2
2

v2
.

With constant probability, it happens that v1 ∈ (4
5 , 1] but v2 ∈ (

√
2

2 ,
4
5 ]. Whenever this is true,

v1 > v2 but β1(v1) ≤ β1(1) =
√

2− 1 = β2(
√

2
2 ) < β2(v2). So, bidder 2 wins despite having the

smaller value.

√
2

2
4
5

1

√
2− 1

β1(x)β2(x)

However, we can still derive a guarantee. This is in the spirit of a Price-of-Anarchy bound.

Theorem 16.5. In any Bayes-Nash equilibrium (βi)i∈N of a first-price auction

Ev∼D
[∑
i∈N

vi(f(β(v)))
]
≥ 1

2Ev∼D
[
max
i∈N

vi

]
.



Algorithmic Game Theory, Summer 2018 Lecture 16 (page 4 of 5)

Before we come to the proof for Bayes-Nash equilibria, let us first see the argument in the
full-information setting for pure Nash equilibria. That is, the valuations v and the bids b are
fixed now.

It is important to observe that we can write the social welfare
∑
i∈N vi(f(b)) also as the sum

of utilities and payments:
∑
i∈N vi(f(b)) =

∑
i∈N ui(b, vi) +

∑
i∈N pi(b).

Let i∗ be a player of maximum value. If this bidder now bids 1
2vi∗ , then her utility is 1

2vi∗ if
she wins the item with this bid, meaning that maxi 6=i∗ bi < 1

2vi∗ . Otherwise it is 0. So, always
the utility is at least 1

2vi∗ −maxi 6=i∗ bi
As we are in an equilibrium, ui∗(b, vi∗) ≥ ui∗((1

2vi∗ , b−i∗), vi∗) ≥
1
2vi∗ − maxi bi. Also,

ui(b, vi) ≥ 0 for all i ∈ N because one option would be bi = 0. Therefore∑
i∈N

ui(b, vi) +
∑
i∈N

pi(b) ≥
1
2vi

∗ −max
i
bi +

∑
i∈N

pi(b) = 1
2vi

∗ .

Proof. We bound Ev∼D [
∑
i∈N ui(β(v), vi)]. To this end, we use that for each bidder for each vi

Ev−i∼D−i [ui(β(v), vi)] ≥ Ev−i∼D−i

[
ui

((
vi
2 , β−i(v)

)
, vi

)]
.

This holds for every vi, so it also holds if we draw vi from Di and take this expectation:

Ev∼D [ui(β(v), vi)] ≥ Ev∼D
[
ui

((
vi
2 , β−i(v)

)
, vi

)]
.

And by linearity of expectation, we also get

Ev∼D
[∑
i∈N

ui(β(v), vi)
]

=
∑
i∈N

Ev∼D [ui(β(v), vi)]

≥
∑
i∈N

Ev∼D
[
ui

((
vi
2 , β−i(v)

)
, vi

)]

= Ev∼D
[∑
i∈N

ui

((
vi
2 , β−i(v)

)
, vi

)]
.

For every fixed v, we also have

ui

((
vi
2 , β−i(v)

)
, vi

)
≥ vi

2 −max
i′

βi′(vi′) and ui

((
vi
2 , β−i(v)

)
, vi

)
≥ 0 .

This gives us∑
i∈N

ui

((
vi
2 , β−i(v)

)
, vi

)
≥ max

i∈N
ui

((
vi
2 , β−i(v)

)
, vi

)
≥ max

i∈N

vi
2 −max

i∈N
βi(vi) .

As we are in a first-price auction, maxi∈N βi(vi) =
∑
i∈N pi(β(v)), so∑

i∈N
ui

((
vi
2 , β−i(v)

)
, vi

)
+
∑
i∈N

pi(β(v)) ≥ max
i∈N

vi
2 .

The rest follows directly by linearity of expectation.

4 Outlook: Smooth Mechanisms
The last proof followed a very particular template: We use the fact that bidders do not want
to deviate from the equilibrium to a fixed other strategy. We do not use further properties of
the equilibrium—which is entirely different from the argument for symmetric equilibria. Indeed,
there is a formalization of the latter proof patter. In analogy to smooth games, we also call
mechanisms smooth.



Algorithmic Game Theory, Summer 2018 Lecture 16 (page 5 of 5)

Definition 16.6 (Smooth Mechanism, simplified version). Let λ, µ ≥ 0. A mechanism M =
(f, p), f : B → X, p : B → Rn, is (λ, µ)-smooth if for any valuation profile v ∈ V for each player
i ∈ N there exists a bid b∗i such that for any profile of bids b ∈ B we have∑

i∈N
ui(b∗i , b−i) ≥ λ ·max

x∈X

∑
i∈N

vi(x)− µ
∑
i∈N

pi(b) .

In particular, our proof uses that a single-item first-price auction is (1
2 , 1)-smooth. It uses

b∗i = vi
2 . Next time, we will once again see this definition and how it allows us to bound the

welfare in equilibria of other mechanisms.
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