Algorithmic Game Theory, Summer 2018 Lecture 16 (5| pages)
Bayes-Nash Equilibria

Instructor: Thomas Kesselheim

We have spent the past weeks discussing dominant-strategy incentive compatible (truthful)
mechanisms. In these mechanisms, for every agent it is always a dominant strategy to report the
true value. A classic example is the second-price auction. Today, we will broaden our perspective:
What statements can we make if the mechanism is not truthful? For example, if it is first-price
auction?

A natural approach would be to consider Nash equilibria. For example, given tie breaking in
our favor, the first-price auction has a pure Nash equilibria, in which everybody bids their value
except for the bidder of highest value. She bids the second-highest value. The weakness of this
approach is that it requires full information: Essentially, the bidders have to know the other
values.

Today, we will get to know an equilibrium concept for incomplete information. The players
know their own values but only have a prior belief about the other players’ values.

1 Bayes-Nash Equilibria

We will assume that bidder i’s value v; € V; is drawn independently from some distribution D;.
These distributions are known to all bidders. A bidder chooses a bid b; depending on the own
valuation v;, not knowing v_; but only the distributions. We model this by saying that bidder ¢
chooses a bidding function ;: V; — B;, mapping valuations to bids. Whenever the valuation is
v;, the bidder bids B;(v;). For example, truthful bidding is represented by S;(v;) = v;.

Definition 16.1 (Bayes-Nash equilibrium). A (pure) Bayes-Nash equilibrium (BNE) is a profile
of bidding functions (5;)ien, Bi: Vi = Bi, such that for alli € N, allv; € Vi, and all b; € B;

EU—iND—i [ul(ﬁ(v>7vl>] > EU—iND—i [ul((b;75—z(v))avz)] )

where B(v) = (B1(v1), .., Bnl(vn)).

So, we take the perspective of a single bidder. She knows her own v;. The other values
Vly ey Vie1, Vitls-- ., Un are drawn from Dy, ...,D;—1,Djt1,..., Dy respectively. The bidding
function now tells her to bid 5;(v;). In an equilibrium, no other bid should give a higher utility.
The other bidders keep playing according to the respective bidding functions. This, in particular,
means that no other bidding function yields a higher expected utility when also taking the
expectation over v;.

Example 16.2. In a truthful mechanism, (3;)ien with Bi(v;) = v; for alli € N and all v; € V;
1s a Bayes-Nash equilibrium. It is not necessarily the only one.

Example 16.3. Consider a first-price auction with two bidders, in which D; is the uniform
distribution on [0,1]. Let us show that (B;)ien with B;(v;) = tv; for alli € N is a Bayes-Nash
equilibrium.

Observe that for symmetry reasons, it is enough to only consider bidder 1. Fiz any vy € V1
and let us write out the expected utility when bidding some arbitrary by € By. The expectation is
over bidder 2’s value, respectively the bid.

o, [ia (0], a2, o0)] = [ (0, BaCen)) ees = [ (11, 2) o)t
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Here, we used that Ba(ve) = %. Now, what is the value of uy ((b1,%),v1)? If by < 2, then it
is 0, if by > 22, then it is vi — b}. Therefore if by <  then

26y v

1 2 2
Eu, [1(0 fa(02) )] = [ (o =$)dunt [ 0dvs = 2y (0n ) = T2 (8- )
1

2 2

v1

We see that that the last term is mazimized exactly for by = %, so for all vy and b}

Ey,~Dp, [u1 ((1121,52(020 ,v1>} > Ey,op, [u1 (b7, B2(v2)),v1)]

which is exactly the equilibrium condition.

2 Symmetric Bayes-Nash Equilibria of First-Price Auctions

We will derive a generalization of this equilibrium for arbitrary numbers of players n and arbitrary
continuous, identical distributions Dy, ..., D,.
We will assume that for all 7 € N and all z € R>

Prlv; < 2] = F(z) = /Oxf(t)dt .

We also write G(x) for (F(z))" .
Let us assume that there is a Bayes-Nash equilibrium (f;);en in which all functions are
identical and differentiable. Then we have for all y € Rx>q

Ey_~p_,; [ui((y, B-i(v)),v:1)] = (vi —y)Pr | \ Bj(v;) <y
j#i

If we let ¢ denote the inverse of 3;, then, Pr [8;(v;) < y] = Pr[v; < ¢(y)] = F(o(v)) as B = Bi.

So we get

= (vi —y) [ Pr[8(v;) <]
i

Eo_~p_, [ui((y, 8-i(v)),vi)] = (vi —y) [ F(é(y) = (vi = y)G (o)) -
JF#i

If 5;(v;) =y, then y has to be a local maximum of the above function. That is

d

d*y(vz' —y)G(o(y)) =0 .

The derivative can be calculated by standard rules

j‘ym —YGBW) = ~G(bW)) + (v — G (SN (v) -

By the inverse function theorem, we have ¢'(y) = m That is, if 5;(v;) = y then

—G(6(y) + (vi — y)G’<¢<y>>W _0

Replacing all occurrences of y by £;(v;) (so ¢(y) = v;), we get

—G(v;) + (vi — ﬁz’(vz‘))G'(vi)ﬂ((lm =0,

or equivalently

Bi(vi) G (vi) + Bi(vi)G' (vi) = v;G'(v;) .
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This has to hold for all v; € R<y. Observe that the left-hand side is exactly the derivative of
B;G. So, all solutions to this equation have the form

Bi(v))G(v;) = | v;G'(v;)dv; + constant .

As (3;(0) = 0, we have
1

G(Ui>/0 tG'(t)dt .

One can verify that this is indeed an equilibrium the same way we did this in Example [16.3]
And, as we have seen, it is necessarily the only symmetric equilibrium.

Bi(v;) =

3 A Welfare Bound for First-Price Auctions

Let us have a closer look at the symmetric equilibrium that we have just derived. We observe
that for any distribution the functions §; are always strictly increasing. This means, whenever a
bidder has a higher value, the bid will also be higher. Consequently, always the bidder with the
highest value wins.

Observation 16.4. In the symmetric Bayes-Nash equilibria (B;)ien of a first-price auction with
identical distributions for allv €V

> ui(f(B(v)) = maxv; .

EN
iEN 1€

If distributions are different, the equilibrium is usually asymmetric and it is not always true
that the bidder with the highest value wins the item. For example, if v; is uniformly distributed

on [0, 4] and v, is uniformly distributed on [0, 2

|, then the unique Bayes-Nash equilibrium is
1—/1+0? 1—4/1—1v3
Bi(vi)) =————— and fo(vg)= ———

U1 V2

With constant probability, it happens that v, € (%, 1] but vy € (?, %] Whenever this is true,
v1 > vy but Bi(v1) < Bi(1) = V2 — 1 = B2(¥%2) < Ba(va). So, bidder 2 wins despite having the

smaller value.

However, we can still derive a guarantee. This is in the spirit of a Price-of-Anarchy bound.

Theorem 16.5. In any Bayes-Nash equilibrium (B;)icn of a first-price auction

1
> §EUND [I}g}\}[{ vi:|

Eyon [z w(F(BO)

1EN
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Before we come to the proof for Bayes-Nash equilibria, let us first see the argument in the
full-information setting for pure Nash equilibria. That is, the valuations v and the bids b are
fixed now.

It is important to observe that we can write the social welfare ;. n v;(f(b)) also as the sum
of utilities and payments: Y,y vi(f(0)) = D ien wi(b, vi) + D ;e pi(b).

Let i* be a player of maximum value. If this bidder now bids %vi*, then her utility is %vi* if
she wins the item with this bid, meaning that max;;« b; < %vl Otherwise it is 0. So, always
the utility is at least %vi* — max;« b;

As we are in an equilibrium, wu;«(b,vi+) > ui*((%vi*,b_i*),vi*) > %vi* — max; b;. Also,
u;(b,v;) > 0 for all i € N because one option would be b; = 0. Therefore

Z Ul(b, ’Ui) + Z pl(b) > %Ui* — mlaX b; + sz(b) = 1111'* .

ieEN 1EN 1€EN 2

Proof. We bound E,p [>;cny ui(B(v),v;)]. To this end, we use that for each bidder for each v;

E, ..p_, [ui(B(v),v:)] > Ey_p_, {ul ((Z,ﬂ—i(v)) ,w)}

This holds for every v;, so it also holds if we draw v; from D; and take this expectation:

Eup [t:(8(v),vi)] > Epop {uz ((gi,ﬁ—z‘(v)> ,wﬂ

And by linearity of expectation, we also get

Ey,op [Z ui(ﬁ(v),vi)] = Euep [ui(B(v), vi)]

ieEN iEN

> %:VEUND [uz ((1;7/8—1'(7))> 7%’)]

Vs
= EUND [Z Uq ((5) B—Z(U)) 7’Ui>‘|
1EN
For every fixed v, we also have

U ((1;7/8—1'('0)) ,Uz‘) > % - mi&,lxﬁz"(vi') and  wy ((Tg,ﬁ—i(v)) 7'Ui> >0 .

This gives us
Zu- o B_i(v) ) ,v; )] > maxu; v B-i(v) ), v > max = — max [;(v;) .
L\ 27T M) T hen P\ 27T "Y) T ieNn 2 ien T
1EN
As we are in a first-price auction, max;en 3;(vi) = > ;e n Pi(B(v)), so
v; v;
S ((508-40) o) + X pB0) = max o
iEN 1EN

The rest follows directly by linearity of expectation. O

4 Outlook: Smooth Mechanisms

The last proof followed a very particular template: We use the fact that bidders do not want
to deviate from the equilibrium to a fixed other strategy. We do not use further properties of
the equilibrium—which is entirely different from the argument for symmetric equilibria. Indeed,
there is a formalization of the latter proof patter. In analogy to smooth games, we also call
mechanisms smooth.
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Definition 16.6 (Smooth Mechanism, simplified version). Let A, u > 0. A mechanism M =

(f,p), f: B— X, p: B— R", is (X, u)-smooth if for any valuation profile v € V' for each player
i € N there exists a bid bf such that for any profile of bids b € B we have

Z wi (b, b—i) > A~ max Z vi(x) — 1 Z pi(b) .
ieN PEX ieN ieN

In particular, our proof uses that a single-item first-price auction is (%, 1)-smooth. It uses
bi = 5. Next time, we will once again see this definition and how it allows us to bound the
welfare in equilibria of other mechanisms.
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