Algorithmic Game Theory, Summer 2018 Lecture 9 (5| pages)
Price of Stability and Strong Nash Equilibria

Instructor: Thomas Kesselheim

For this lecture, we turn to fair cost-sharing games, which are congestion games with delays
d,(x) = ¢,/z for constant ¢, for every resource r € R. That is, we have a set N of n players
and a set R of m resources. Player i allocates some resources, i.e., his strategy set is ¥; C 2.
Each resource r € R has fixed cost ¢, > 0. The cost ¢, is assigned in equal shares to the players
allocating r (if any).

Social cost turns out to be the sum of costs of resources allocated by at least one player:

cost(S) = ZQ‘(S) = Z Z dy(n,) = Z Ny - Cp /Ny = Z [ (1)
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The price of anarchy for pure Nash equilibria can be as big as the number of players n, even
in a symmetric game. For € > 0, consider the example

1+e

Edge labels indicate the cost value ¢, for this resource. It is a pure Nash equilibrium if all
players use the bottom edge, whereas the social optimum would be that all users use the top
edge.

Although this is a very stylized example, there are indeed examples of such bad equilibria
occurring in reality. A prime example are mediocre technologies, which win against better
ones just because they are in the market early and get their share. This way, they are widely
supported. Maybe another example are social networks and messaging apps. Many people
would prefer not to use, say, Facebook but they cannot switch to an alternative platform unless
their friends do.

That said, the price-on-anarchy viewpoint is still a pessimistic one and in today’s lecture we
will learn shows that when being just a little more positive, we can show much better bounds.

1 Price of Stability

Let us first turn to the price of stability. For an equilibrium concept Eq, it is defined as

min,cgq cost(p)

PoSgq =
B9 Tningeg cost(s)

As the set of equilibria gets larger, the minimum gets smaller and smaller. Therefore, if the
respective equilibria exist, we now have

1 < PoScce < PoSce < PoSune < PoSpne < PoApne < ...

Theorem 9.1. In a symmetric cost-sharing game, the price of stability for pure Nash equilibria
15 1.
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Proof. We explicitly construct a pure Nash equilibrium as follows. It is a symmetric equilibrium,
meaning that all players use the same strategy. Consider player 1, and set S7 to the strategy
from ¥; that minimizes ), . s, Cr- Set Sy =... =5, = 51. This certainly minimizes social cost
according to Equation .

It is also an equilibrium because for each i strategy S; is a best response against S_;. To
see this, consider some alterantive S} € 3;. We have
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where we used that S; was chosen to minimize ZTG s, Cr- ]

The core insight of the previous proof is that in a symmetric game every social optimum is
a pure Nash equilibrium. For general, asymmetric games, the social optimum is not necessarily
a pure Nash equilibrium. Consider the following game with n players. Each player ¢ has source
node s; and destination node t.

OO () J1+e

A player two possible strategies: Either take the direct edge or take the detour via v. The
social optimum lets all players choose the indirect path, ending up with social cost 1 + €. This,
however, is no Nash equilibrium. Player n would opt out and take the direct edge. Therefore,
the only pure Nash equilibrium lets all players choose their direct edge, yielding social cost of
M. Here, H,, = > 1", % =1+ % + % + ...+ % denotes the n-th harmonic number. We have
Hy, = O(logn).

Theorem 9.2. The Price of Stability for pure Nash equilibria in fair cost sharing games is at
most H,,.

Proof. Rosenthal’s potential function for cost-sharing delays is

(I)(S):Zi:cr/z‘ = Zcr-<1+;+;+...+é>

reR i=1 reER

ne>1
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= cost(S) - Hn .

In ®(S) we account for each player allocating resource r a contribution of ¢, /i for some
i =1,...,n,, whereas in his cost ¢;(S) we account only ¢,/n,. Hence, for every state S of a
cost-sharing game we have

cost(S) < ®(S) < cost(S) - Hy, -
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Now suppose we start at the optimum state S* and iteratively perform improvement steps for
single players. This eventually leads to a pure Nash equilibrium. Every such move decreases
the potential function. For the resulting Nash equilibrium S we thus have ®(S) < ®(S*) and

cost(S) < ®(S) < D(S™) < cost(S™) - Hy, -

This proves that there is a pure Nash equilibrium that is only a factor of H, more costly than
S*. O

2 Strong Nash Equilibria

Let us consider again the example that the price of anarchy can be as high as n. There are two
pure Nash equilibria, namely all players taking either the cheap or the expensive edge. Observe
that the bad equilibrium in which all players take the expensive edge is actually brittle. If any
single player convinced one of his friends to take the cheap edge, the whole equilibrium would
fall apart. Indeed this is true for all cost-sharing games, as we will show next.

First, we will introduce another solution concept called strong Nash equilibrium.

Definition 9.3. Let s be a state of a cost-minimization game. Consider a subset of players
A C N (coalition). The strategy vector s’ is a beneficial deviation for A if

ci(8'4,5-4) < ci(s) forallie A
and  c;(s'4,5-4) < ci(s) for at least one 1 € A .

The state s is called a strong Nash equilibrium if there is no coalition with a beneficial
deviation.

Every strong Nash equilibrium is also a pure Nash equilibrium because unilateral deviations
are covered by coalition size 1. In our introductory example, we had two pure Nash equilibria
but only one strong Nash equilibrium, namely the one where all players choose the cheaper
edge. We will now consider the price of anarchy for strong Nash equilibria. Remember that
generally, for an equilibrium concept Eq, it is defined as

mMax,cgq cost(p)

POAEq =

mingeg cost(s)
So, given the respective equilibria exist, we have

PoSpne < PoSsne < PoAsne < PoSpne -

Observation 9.4. A state s of a symmetric cost-sharing game is a strong Nash equilibrium if
and only if it is socially optimal. Therefore, the price of anarchy for strong Nash equilibria is
1.

Proof Idea. We have to show the if and the only if statement. For only if, observe that all
players could form a coalition and switch to a strategy S; that minimizes ) . s, ¢r- The new
cost will be %Zre s, cr for every player, which is the smallest per player cost that appears in
any state. For the if part, again observe that a state is socially optimal only if all players incur
this very cost. O

An asymmetric cost-sharing game does not always admit a strong Nash equilibrium, which
you can verify in this example.
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Even if there is a strong Nash equilibrium, the price of anarchy can be as big as H,,. Just
consider the same example that showed us that the price of stability for pure Nash equilibria
is at least H,. The only pure Nash equilibrium in this case is also a strong Nash equilibrium.
However, we can show an upper bound of H,, on the social cost a strong Nash equilibrium. So,
if there is a strong Nash equilibrium, this bounds the price of anarchy.

Theorem 9.5. The price of anarchy for strong Nash equilibria in fair cost-sharing games is at
most H,,.

Proof. Let S be a strong Nash equilibrium, S* be a socially optimal state.

First, we consider the coalition that consists of all players. Letting all players deviate to S*
is not beneficial. Therefore, there has to be one player i for which ¢;(S) < ¢;(S*). Without loss
of generality, let this player be n.

Next, we consider the coalition of all players except n. Again, it is not beneficial if these
players deviate to S*. So, again, there has to be a player ¢ for which ¢;(S) < ¢;(5*,,, Sn). Let
this player be n — 1.

Following the argument, after renaming players, we get strategy profiles S* fort € {1,2,...,n}
such that

St —

)

S fori <t
S; fori>t

and ¢ (S) < ¢ (Sh).
For 7 € R, define k! = |{i <t |r € Sf}|. We now have

cr cr
a(S") = Z n(S) = kt

rest rest "

This gives us

Now observe that

tresSy T 2 3 n(57)
Therefore, .
Cr — = ®(57)
reR  treSy "
Consequently,
cost(S) =Y ¢(S) < P(S*) < Hycost(S™) .
ieN
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Recommended Literature

e Chapter 19.3 in the AGT book. (PoS bound)

e Tim Roughgarden’s lecture notes http://theory.stanford.edu/~tim/f13/1/115.pdf
and lecture video https://youtu.be/VjCKN1-GENT

e A. Epstein, M. Feldman, and Y. Mansour. Strong equilibrium in cost-sharing connection
games. Games and Economic Behavior, 67(1):5168, 2009. (bound for strong equilibria)
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