Algorithmic Game Theory, Summer 2018 Lecture 3 (| pages)

Normal-Form Games and Mixed Nash Equilibria

Instructor: Thomas Kesselheim

In this lecture, we introduce the general framework of games. Congestion games, as introduced
in the last lecture, are a special case. The notion of pure Nash equilibria readily generalizes but
pure Nash equilibria might not exist. Therefore, we will introduce the concept of mixed Nash
equilibria, which always exist in games with finitely many players and finitely many strategies.

1 Normal-Form Game

All games that we will consider throughout this course can be represented as normal-form games.
We are following the standard notation, which is slightly different from the standard notation in
congestion games. Normally, this does not cause major confusion.

Definition 3.1. A (normal-form, cost-minimization) game is a triple (N, (Si)ien (¢i)ien)-
Here, N is the set of players, |IN'| =n, often N ={1,...,n}. For each player i € N, S; is the
set of (pure) strategies of player i. The set S = [[;cp Si is called the set of states or strategy
profiles. For each i € N, ¢;: S — R is the cost function of player i. In state s € S, player i has
a cost of ¢;(s).

Again, we denote by s_; = (81, ..., Si—1, Si+1, ---, Sn) & state s without the strategy s;. This
notation allows us to concisely define a unilateral deviation of a player. For i € A/, let s € S
and s, € S;, then (s,s_;) = (S1,...,8i—1, 8}, Sit1s-- -, Sn)-

One class of such games are congestion games. Here, the cost functions ¢;(s) have a particular
structure: They are defined via resources and delay functions.

Any game with two players with finitely many strategies can be described by two matrices
A = (Gs, 55)s1€51,50€5, and B = (bs, s5)s1€5:,50€5, (bimatriz game). Player 1 (referred to as row
player) chooses a row; player two (column player) chooses a column. Their costs are given as
! (S) = Qsy,s9, 02(8) = b31,82'

Example 3.2 (Congestion Game). A congestion game with two players can also be written as

a bimatriz game, see an example of a symmetric network congestion game below with three s-t
paths. As we see, the matrices will usually be huge.

<> <> <>
10 16 12
<>
10 9 8
9 18 13
P>
16 18 16
8 16 1
<>
12 13 1/

Example 3.3 (Battle of the Sexes). Suppose Angelina and Brad go to the movies. Angelina
prefers watching movie A, Brad prefers watching movie B. However, both prefer watching a
movie together to watching movies separately.
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2 Pure Nash Equilibrium

The notion of best response and pure Nash equilibrium are defined exactly as in the case of
congestion games.

Definition 3.4. A strategy s; is called a best response for player i € N against a collection
of strategies s—; if ¢;i(si,$—i) < ci(s},5—;) for all s, € S;. A state s € S is called a pure Nash
equilibrium if s; is a best response against the other strategies s_; for every player i € N.

So, a pure Nash equilibrium is stable against unilateral deviation. No player can reduce his
cost by only changing his only strategy.

Pure Nash equilibria need not be unique.

Example 3.5 (Battle of the Sexes). Recall the game from Example[3.3 We can find its pure
Nash equilibria (A, B) and (B, A) by marking best responses with boxes.

6

B

5

Not every game has a pure Nash equilibrium.

Example 3.6 (Inspection Game). Consider a game between a train traveler and a ticket
inspector. The traveler can either (C)omply and buy a ticket before boarding the train or (D )efect
and not buy one. The inspector can decide to be (L)azy and not inspect or she can decide to
(I)nspect. The inspector prefers to inspect only if the traveller is not holding a ticket. The
traveller, in contrast, prefers to buy a ticket only if she will be inspected.

C D

15 0]

10
[15] 60

1

Having marked best responses, we see that there is no cell (corresponding to a pure state) in
which both players are playing a best response simultaneously. Therefore, there is no pure Nash
equilibrium.



Algorithmic Game Theory, Summer 2018 Lecture 3 (page 3 of |€I)

3 Mixed Nash Equilibrium

We will now define a different equilibrium concept that generalizes pure Nash equilibria. Rather
than making a fixed (deterministic) choice, the players can randomize over their strategies.

Definition 3.7. A mixed strategy o; for player i is a probability distribution over the set of
pure strategies S;.

We will only consider the case of finitely many pure strategies and finitely many players. In
this case, we can write a mixed strategy o; as (0i,)s,es, With ZsiES’i 0i.s; = 1. The cost of a
mixed state o for player ¢ is defined as the expected cost if we draw for each player ¢ a strategy
according to distribution ;. Formally,

CT(O—) = EslNa'lan-’anO'n [Cl(s)] = Z e Z 0-1731 et anasn : Ci(s) .

S1ES1 $nESn

Any pure strategy s; € S; can also be represented as a mixed strategy by setting o; 5, = 1
and is, =0 for s # s;. Therefore, effectively, we have now defined a larger strategy space. On
this space, best response and Nash equilibrium are just defined the same way.

Definition 3.8. A mized strategy o; is a (mixed) best-response strategy against a collection of
mixed strategies o_; if ¢;(04,0_;) < ¢;(0},0_;) for all other mized strategies o). A mized state o
is called a mixed Nash equilibrium if o; is a best-response strategy against o_; for every player

ieN.
A key observation is that it is enough to only consider deviations to pure strategies.

Lemma 3.9. A mized strateqy o; is a best-response strategy against o—; if and only if ¢;(0;,0—;) <
ci(sh,o_;) for all pure strategies s € S;.

Proof. The “only if” part is trivial: Every pure strategy is also a mixed strategy.

For the “if” part, let o_; be an arbitrary mixed strategy profile for all players except for i.
Furthermore, let o; be a mixed strategy for player i such that ¢;(0y,0_;) < ¢(s},0_;) for all
pure strategies s; € S;.

Observe that for any mixed strategy o), we have ¢;(o},0_;) = Yses 01{78;01‘(8;,0'_1‘) >
ming g, ¢i(s;,0—;). Using ming cg, ¢i(s},0-;) > ¢i(04,0-;), we are done. a

This lemma has a very important consequence: If a pure strategy s; is a best response against
pure strategies s_; in the sense of Definition then it is also a best response against s_; in the

sense of Definition So, it is well defined if we simply talk about “best responses”. For this
reason, every pure Nash equilibrium is also a mixed Nash equilibrium.

4 Mixed Best Responses as Probability Distributions over Pure
Best Responses

Let us now see a example of a mixed Nash equilibrium and how we can find it. We will make
use of the following lemma.

Lemma 3.10. A mized strategy o; is a best-response strategy against o_; if and only if every
strategy in the support of o;, i.e., every sj € S; with o;5; > 0, is a best response against o—;.
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Proof. First suppose o; is a distribution over pure best responses. Then for every strategy
s; € 5; with 0; 5, > 0 and every pure strategy s; € S; we have

ci(oiy0-i) = ci(si, o) < ci(s;, 0-;).

Now we can invoke Lemma, @ to conclude that o; is a best response to o_;.

Next suppose o; is not a distribution over pure best responses. Then there exists strategies
si, s, € S; such that o; 5, > 0 but ¢;(s;,0-;) > ¢(s;,0-;). We construct distribution o} from o;
by increasing i by o; s, and decreasing o; 5, to zero. Then,

/
ci(og,0-i) < ci(oi,0-;),
and so g; cannot be a best response. ]

As a consequence of this lemma, we can compute mixed Nash equilibria by choosing
probabilities for one player that will make the other player indifferent between his pure strategies.

Example 3.11 (Inspection Game). Recall the game from Ezample .

C D

15 [0]

L 1—p

[0] 10

1

1—g¢q q

We consider the case that both p and q are in (0,1), meaning that both players mix both their
strategies. It is easy to see that otherwise the equilibrium property cannot hold. The lemma tells
us to compute probabilities (1 — p,p) for the row player and (1 — q,q) for the column player that
make the respective other player indifferent between the two strategies.

To determine the probabilities of the column player, we compute the expected costs for the
pure strategies of the row player, equate them, and solve for q:

Crow(Lu(l_Q7Q)) :crow(l7(1_q’Q))
< 0-(1—¢q)+10-g=1-(1—¢q)+6-¢g

N 1
q= 5
Similarly, to determine the probabilities for the row player:

Ccol(cv (1 —p,p)) = Ccol(Da (1 - p7p))
< 15-(1—-p)+15-p=0-(1—p)+60-p
1
e p=7
We obtain the mized Nash equilibrium in which the row player mizres between L and I
with probabilities (3/4,1/4) and the column player mizes between C and D with probabilities

(4/5,1/5).
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There is also a nice pictorial interpretation of this argument. For each player, the expected
cost of a strategy depends on the choice of probabilities of the respective other player. We find
the mized Nash equilibrium at the respective intersection of both lines.
cost of row player

10
L
6
1
1
0 I q
0 q 1
cost of column player
60
D
15 15
C
0 I D
0 p 1

One may wonder at this point whether it is actually reasonable to assume that player roll
dice when making their decisions. An equivalent interpretation is: There is a population of
inspectors, 25 % of them inspective, 75 % do not. Among the travelers, 80 % buy a ticket, 20 %
do not. Now, an inspector and an traveler are matched at random. On average, they are happy
with their choice.
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