
Algorithmic Game Theory, Summer 2018 Lecture 1 (4 pages)

Introduction to Congestion Games

Instructor: Thomas Kesselheim

In this lecture, we get to know congestion games, which will be our running example for
many concepts in game theory. Before coming to the formal definition, let us consider the
following example.

We are given the following directed graph; there are three players, who each want to reach
their respective destination node from their start node. Edge labels indicate the cost each player
incurs if this edge is used by one, two, or all three players. So, if the edge label is a, b, c and the
edge is used by two players, then each player has cost b for this edge.

s1

s2

s3

t1

t2

t3

4, 4, 4

0, 0, 0

0, 0, 0

1, 2, 3

0, 0, 0

0, 0, 0

Players 2 and 3 do not have any choice, but player 1 has. He can either use the direct edge
or go via s2 and t2. That is, we have the following two states.

s1

s2

s3

t1

t2

t3

4, 4, 4

0, 0, 0

0, 0, 0

1, 2, 3

0, 0, 0

0, 0, 0

s1

s2

s3

t1

t2

t3

4, 4, 4

0, 0, 0

0, 0, 0

1, 2, 3

0, 0, 0

0, 0, 0

State A:

social cost: 4 + 2 + 2 = 8

State B:

social cost: 3 + 3 + 3 = 9

We observe that State A has a smaller social cost than State B. However, player 1 prefers
State B because his individual cost is smaller there. In contrast to State A, State B is stable
because every player is happy with his choice; it is an equilibrium.

We will introduce a general model that allows us to capture these effects. We will ask ques-
tions such as: Are there equilibria? How can these equilibria be found? How much performance
is lost due to selfishness?

1 Formal Definition

Definition 1.1 (Congestion Game (Rosenthal 1973)). A congestion game is a tuple Γ =
(N ,R, (Σi)i∈N , (dr)r∈R). The set N = {1, . . . , n} is a set of players; the set R, |R| = m

Algorithmic Game Theory, Summer 2018 Lecture 1 (page 2 of 4)

is a set of resources. For each player i ∈ N , Σi ⊆ 2R denotes the strategy space of player i, and
every resource r ∈ R has delay function dr : {1, . . . , n} → Z.

We have already seen one way to construct a congestion game by using a graph.

Example 1.2 (Network Congestion Game). In a network congestion game, there is a graph
G = (V,E). The resource set R corresponds to the set of edges E. For each player i ∈ N , there
is a dedicated source-sink pair (si, ti) such that Σi is the set of paths from si to ti.

In particular, in the above example

N = {1, 2, 3} and R = {(s1, t1), (s1, s2), (s2, t2), (s3, s2), (t2, t1), (t2, t3)} .

Player 1’s strategy set is given by Σ1 = {{(s1, t1)}, {(s1, s2), (s2, t2), (t2, t1)}}. These are two
strategies: The first one uses only a single resource/edge, the second one uses three. Players 2
and 3 only have one strategy each.

The delay function of the resource/edge (s2, t2) is d(s2,t2)(x) = x for all x.

Next, we have to add semantics by formalizing the notion of an individual player’s cost.

Definition 1.3. For any state S = (S1, . . . , Sn) ∈ Σ1 × · · ·Σn, let nr(S) = |{i ∈ N | r ∈ Si}|
denote the number of players with r ∈ Si, that is, who use resource r in S. The delay of
resource r in state S is given by dr(nr(S)). Player i’s cost, i ∈ N , is defined to be ci(S) =∑

r∈Si
dr(nr(S)). That is, it is the sum of delays of the resources the player uses.

Example 1.4. In the above example, there are two different states. We have n(s2,t2)(A) = 2
and n(s2,t2)(B) = 3.

Player 1’s cost can be computed as c1(A) = d(s1,t1)(n(s1,t1)(A)) = 4 in state A and c1(B) =
d(s1,s2)(n(s1,s2)(B)) + d(s2,t2)(n(s2,t2)(B)) + d(t2,t1)(n(t2,t1)(B)) = 0 + 3 + 0 = 3.

Now, we are ready for the main definition. Consider a player i ∈ N and any fixed choice
of strategies of the other players. The strategies that player i can choose from usually yield
different costs. One or multiple minimize the cost. These are called best responses. A pure
Nash equilibrium is a state in which each player is choosing such a best response.

Definition 1.5. A strategy Si is called a best response for player i ∈ N against a profile of
strategies S−i := (S1, . . . , Si−1, Si+1, . . . , Sn) if ci(Si, S−i) ≤ ci(S

′
i, S−i) for all S′i ∈ Σi. A state

S ∈ Σ1 × · · · × Σn is called a pure Nash equilibrium if Si is a best response against the other
strategies S−i for every player i ∈ N .

So, in other words, a pure Nash equilibrium is a state in which no player can unilaterally
decrease his cost by deviating to a different strategy. It is possible, however, that other strategies
have the same cost. Also, equilibria need not be unique.

2 Existence of Pure Nash Equilibria

As our first result, we will show every congestion game has a pure Nash equilibrium. We will
talk about improvement steps. The pair of states (S, S′) is an improvement step if there is some
player i ∈ N such that ci(S

′) < ci(S) and S′−i = S−i.

Example 1.6. A sequence of (best response) improvement steps:

Algorithmic Game Theory, Summer 2018 Lecture 1 (page 3 of 4)

s t

1, 1

0, 99

1, 1

3, 3

0, 0

0, 3
6, 6 1, 1

s t

1, 1

0, 99

1, 1

3, 3

0, 0

0, 3
6, 6 1, 1

s t

1, 1

0, 99

1, 1

3, 3

0, 0

0, 3
6, 6 1, 1

s t

1, 1

0, 99

1, 1

3, 3

0, 0

0, 3
6, 6 1, 1

start: after first improvement (red player):

after second improvement (blue player): after third improvement (red player):

We will show the following theorem.

Theorem 1.7 (Rosenthal 1973). For every congestion game, every sequence of improvement
steps is finite.

This property is sometimes also called finite improvement property. It immediately implies
the following corollary.

Corollary 1.8. Every congestion game has at least one pure Nash equilibrium.

The reason is as follows: Start from an arbitrary state S0 and generate an improvement
sequence S0, S1, If there is no improvement step (St, S

′), then St is a pure Nash equilibrium.
Otherwise, there is improvement step (St, S

′) and we can set St+1 = S′. After only finitely many
steps, we have to have reached a pure Nash equilibrium, otherwise we would be generating in
infinite sequence of improvement steps.

Proof of Theorem 1.7. Rosenthal’s analysis is based on a potential function argument. For
every state S, let

Φ(S) =
∑
r∈R

nr(S)∑
k=1

dr(k) .

This function is called Rosenthal’s potential function.

Lemma 1.9. Let S be any state. Suppose we go from S to a state S′ by an improvement step
of player i. then Φ(S′)− Φ(S) = ci(S

′)− ci(S).

Proof. We give two different proofs, one is more intuitive, the other one is more algebraic and
formal.

The potential Φ(S) can be calculated by inserting the players one after the other in any
order, and summing the delays of the players at the point of time at their insertion.

Algorithmic Game Theory, Summer 2018 Lecture 1 (page 4 of 4)

1 2 3 4 5 6

dr(k)

1 2 3 4 5 6

dr′(k)

Figure 1: Proof of Lemma 1.9: The contribution of two resources r and r′ to the potential is
the shaded area. If a player changes from r′ to r, his delay changes exactly as the potential
value (difference of red areas).

Without loss of generality player i is the last player that we insert when calculating Φ(S).
Then the potential accounted for player i corresponds to the delay of player i in state S. When
going from S to S′, the delay of i decreases by ∆, and, hence, Φ decreases by ∆ as well (see
Figure 2 for an example.

For the second proof, let’s observe how the potential changes. We can reorder the sum to
get

Φ(S′)− Φ(S) =
∑
r∈R

nr(S′)∑
k=1

dr(k)−
nr(S)∑
k=1

dr(k)

 .

What is the value of ∆r :=
∑nr(S′)

k=1 dr(k)−
∑nr(S)

k=1 dr(k)?
There are four cases. In the first case, resource r is used by player i in both Si and S′i. In

this case, nr(S
′) = nr(S) and ∆r = 0.

In the second case, resource r is neither used in Si nor S′i. Again, nr(S
′) = nr(S) and

∆r = 0.
In the third case, r ∈ S′i \ Si. In this case nr(S

′) = nr(S) + 1, so ∆r = dr(nr(S
′)).

Finally, the fourth case if r ∈ Si \ S′i. Now, nr(S
′) = nr(S) − 1, and therefore ∆r =

−dr(nr(S)).
We compare this to ci(S

′)− ci(S), which can be simplified by reordering the sums

ci(S
′)−ci(S) =

∑
r∈S′

i

dr(nr(S
′))−

∑
r∈Si

dr(nr(S)) =
∑

r∈S′
i\Si

dr(nr(S
′))−

∑
r∈Si\S′

i

dr(nr(S)) =
∑
r∈R

∆r .

The lemma shows that Φ is a so-called exact potential, i.e., if a single player decreases its
cost by a value of ∆ > 0, then Φ decreases by exactly the same amount.

Further observe that

(i) the delay values are integers so that, for every improvement step, ci(S
′)− ci(S) ≤ −1,

(ii) for every state S, Φ(S) ≤
∑

r∈R
∑n

i=1|dr(i)|,

(iii) for every state S, Φ(S) ≥ −
∑

r∈R
∑n

i=1|dr(i)|.

Consequently, the number of improvements is upper-bounded by 2 ·
∑

r∈R
∑n

i=1 |dr(i)| and
hence finite.

