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Problem 1

We agree to try to meet between 12 and 1 for lunch at our favorite sandwich shop. Because
of our busy schedules, neither of us is sure when we’ll arrive; we assume that, for each of us,
our arrival time is uniformly distributed over the hour. So that neither of us has to wait too
long, we agree that we will each wait exactly 15 minutes for the other to arrive, and then
leave. What is the probability we actually meet each other for lunch?

Problem 2

Consider the following product knapsack problem. Given n objects with deterministic weights
w1, . . . , wn ∈ [0, 1], a capacity W and deterministic profits p1, . . . , pn ∈ R≥1, find a solution
x ∈ {0, 1}n that maximizes the product

p(x) =
∏

i:xi=1

pi

of the profits of the chosen items under the constraint that wtx ≤W . Adapt the Nemhauser-
Ullmann algorithm to the product knapsack problem and argue that the adaptation computes
an optimal solution to this problem.

Problem 3

We discuss bad examples for the core algorithm. In the following, you may use fractional
weights and profits.

1. The idea behind the core algorithm is the hope that the optimal solution for the
fractional knapsack problem as computed by the greedy algorithm on page 105, x̄,
typically differs from an optimal solution in only in a few items, and that these items
lie in the core. Give an example where, except for the break item, no item that is in x̄
is contained in any optimal solution x∗.

2. The expanding core algorithm estimates the additive integrality gap Γ by iteratively
increasing it. Give an example where it increases the estimator n− 1 times and finally
ends up with all items in the core.



Problem 4

Consider an arbitrary binary optimization problem with linear objective cTx and solution
set S ⊆ {0, 1}n as discussed in Chapter 7. Recall that the winner gap ∆ is defined as

∆ := cx∗ − cx∗∗

where x∗ is an arbitrary optimal solution and x∗∗ is a solution that is optimal amongst all
solutions in {x ∈ S | x 6= x∗}. Find better upper bounds on Pr(∆ ≤ ε) than the bound
provided by Lemma 7.3 for the following scenarios:

1. The ci are φ-perturbed numbers from [0, 1] (instead of [−1, 1]).

Show that Pr(∆ ≤ ε) ≤ nφε.

2. The ci are numbers from [1, e] that are chosen independently from the distribution
with the density

f(x) =

{
1
x for all x ∈ [1, e]

0 else.

Show that Pr(∆ ≤ ε) ≤ n ln(1 + 2ε).


