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1. Intro

Mathematicians claim that math is not a spectator sport:
you cannot understand math, or enjoy it, without doing it.

— Barbara Burke Hubbard, The World According to Wavelets

1.1. Danksagung

Für die großartige Arbeit in den letzten 6 Jahren, die uns erlaubt, bei diesem Vorkurs auf
umfangreiches Material und Erfahrung zurückzugreifen, obwohl wir ihn zum ersten Mal
halten, danken wir besonders besonders herzlich Christoph Lüders.

Auch möchte ich mich jetzt schon herzlich bei allen diesjährigen Tutoren bedanken: Lena
Berster, Jonas Cremer, Bettina Esser, Julius Gummersbach, Matthias Neidhardt, Johanna
Ockenfels, Benedikt Stratmann und Vincent Wieland.

Teile dieses Vorkurses orientieren sich an dem Skript zur Vorlesung “Logik und diskrete
Strukturen” von Heiko Röglin [Rö17]. Ebenso folgen einige Abschnitte Teilen aus “Einfüh-
rung in die Informatik” von Wolfgang Küchlin und Andreas Weber [KW05]. Herzlichen
Dank für die Inspiration und Vorlage.

Der Vorkurs basiert in Teilen auf einem Skript und Übungszetteln von Leif Thiemann und
Christopher Voss. Sarah Sturm hat die Übungen weiter ergänzt und durchgesehen. Auch
an diese meinen herzlichen Dank.

Ebenso herzlichen Dank an alle Fehlersucher und -finder! 1

Bonn, im September 2020
B. S. und D. K.

1.2. Organisatorisches

Der Vorkurs findet statt von Montag, dem 28.09., bis Freitag, dem 09.10., jeweils von
10h–12h.

Aufgrund der Covid-19-Sicherheitsmaßnahmen findet der Vorkurs erstmals komplett online
statt. In der ersten Woche (vom 28.09. bis 02.10.) wird die Vorlesung von Barbara Schwarz-
wald gehalten und Sie können unter diesem Zoom-Konferenz-Zugangslink teilnehmen. In
der zweiten Woche (vom 05.10. bis 09.10.) wird die Vorlesung von David Kübel gehalten.

Die angegeben Startzeiten sind wie in der Universität üblich “c.t.”, cum tempore, d.h. eine
Viertelstunde nach der vollen Stunde. Das Gegenteil ist “s.t.”, sine tempore, also pünktlich
zur vollen Stunde.

Die Übungen sind unterteilt in 8 Gruppen und finden von 13h–15h statt. Manche der
Gruppen werden über Zoom, andere über die Plattform BigBlueButton gehalten. Zur
Teilnahme treten Sie ab dem 28.09. einer der Übungsgruppen im precampus-Kurs bei.
Dort finden Sie dann die entsprechenden Zugangsdaten.

1Sie haben trotzdem noch einen Fehler gefunden? Am Besten sagen Sie uns direkt in oder nach der
Vorlesung Bescheid. Aber auch Email wird gelesen. Vielen Dank!
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Dieses Skript ist unter der Lizenz “Creative Commons Attribution-ShareAlike” (CC BY-SA
4.0) verfügbar. Damit darf das Material aus diesem Skript geteilt und bearbeitet werden,
solange gewisse Bedingungen erfüllt sind. Für die genauen Regeln siehe die Lizenz.

Während des Vorkurses wird es wahrscheinlich neue Versionen dieses Skripts geben, die
Fehler korrigieren oder etwas erweitert sind. Die neueste Version ist immer im precampus-
System der Uni Bonn erhältlich.

1.3. Raison d’être

Der Vorkurs Formale Methoden der Informatik wendet sich an (kommende) Erstsemester
des Bachelorstudiengangs Informatik. Der Vorkurs dient mehreren Zwecken:

• Schaffung eines einheitlichen Niveaus & Wiederholung von “Vokabeln”

• Übung des mathematischen Formalismus

• Stimulation zu Gruppenarbeit, Übung von “social skills”

• Ausblick auf einige interessante Themen der Informatik

Wir versuchen den Spagat zwischen dem Auffrischen von bereits aus der Schule bekanntem
Stoff und der Präsentation von neuem, der Informatik eigenem Stoff. Wir trainieren formale
Genauigkeit einerseits und geben den großen Überblick über die Breite des Anfängerstudi-
ums andererseits.

Aufgrund dieser widerstrebenden Interessen und der Kürze der Zeit werden wir das nur zu
einem gewissen Grade schaffen. Bitte bleiben Sie trotzdem dabei! Der Sinn des Vorkurses
ist, Sie mit den Themen der Informatik zum ersten Mal in Berührung zu bringen. Alles,
was wir hier besprechen, kommt im Laufe Ihres Studiums erneut dran und wird genauer
eingeführt und ausgiebiger bearbeitet. Wenn Sie dann beim zweiten Durchgang des Themas
denken, “wo war denn da das Problem?”, hat der Vorkurs seinen Sinn erfüllt.

Lassen Sie sich aber bitte auch nicht abschrecken, falls gewisse Themen des Vorkurses
Ihnen zu einfach erscheinen. Nicht alle Erstsemester haben den gleichen Hintergrund und
damit das gleiche Wissen. Die Informatik vereint viele verschiedene Aspekte auch anderer
Wissenschaften und wir hoffen, dass für Jede und Jeden in diesem Vorkurs genug Neues
und Interessantes zu finden ist. Weiterhin kann es am nächsten Tag bei einem neuen
Thema ganz anders aussehen.

Selbst, wenn Ihnen dieser Vorkurs leicht fällt, lassen Sie sich nicht täuschen: das Niveau
und die Intensität des Lernens an der Universität sind nicht mit denen der Schule zu
vergleichen. Daher hören Sie lieber den gleichen Stoff doppelt, als ihn zu verpassen und
möglicherweise ein Modul wiederholen zu müssen.

1.4. Selbsthilfe

Wie Jürgen Fohrmann, Rektor unserer Universität von 2009–2015, bei der Absolventenfeier
2014 sagte, ist das Ziel jedes Studiums “Bildung in einem bestimmten Fachbereich”. Dazu
ist meist das Erlernen von Wissen erforderlich, welches später in Prüfungen abgefragt wird.
Wie Sie dieses Wissen erwerben, ist dabei eher unwesentlich und zudem von Person zu
Person sehr unterschiedlich. Nutzen Sie alle Möglichkeiten, die sich Ihnen bieten, nicht
nur die Vorlesungen, Übungen und Literatur. Finden Sie heraus, wie Sie am besten lernen
können.
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Einige sinnvolle Hilfsmittel könnten für Sie sein:

• Dieses Skript: schauen Sie zumindest mal drüber, bevor Sie zur dieser Vorlesung
gehen. Und wenn die Vorlesung dann läuft, können Sie auch auf einen der vielen
Links klicken (alle blauen Texte sind externe Links), wenn Sie mehr zu einem Thema
wissen wollen. Oft verlinkt es auf Wikipedia, siehe den nächsten Punkt.

Das Skript enthält auch einige Aufgaben, deren Lösungen dann in Anhang A zu
finden sind.

• Wikipedia: Muss man dazu noch mehr sagen? Lesen Sie aber auch mal die englische
Wikipedia. Die Inhalte und Qualität sind nicht immer wie in der deutschen, oft kann
man einiges mehr oder anders lernen.

• Es gibt sehr gute Foren im Netz. Zum Beispiel hat Stack Overflow für Fragen rund ums
Programmieren oder Mathematics Stack Exchange für Fragen zur Mathematik eine
hohe Qualität. Ansonsten ist natürlich Google immer wieder die erste Anlaufstelle.

• Nutzen Sie natürlich auch die Bibliotheken der Universität. Bücher zum Thema
Informatik stehen in der “Abteilungsbibliothek für Medizin, Naturwissenschaften und
Landbau”, Nußallee 15a, 53115 Bonn. Die Öffnungszeiten sind sehr leger: Montag–
Sonntag, 8:00–24:00 Uhr. Es gibt in den Bibliotheken große Lesesäle, in denen man in
Ruhe lesen und arbeiten kann. Die Lehrbuchsammlung hält von den Standardwerken
viele Exemplare zum Ausleihen bereit. Die ULB hat auch eine Facebook-Seite und
einen Twitter-Account!

In der Römerstraße und im LBH, Raum E.15 stehen den Studierenden in den
Fachschaftsräumen Handapparate mit wichtiger Grundlagenliteratur zur Verfügung,
siehe auch hier. Die Bücher der Handapparate können nur vor Ort eingesehen werden.

Sie wollen vorher wissen, ob und wo ein Buch verfügbar ist (es gibt ja noch andere
Bibliotheken der Uni)? Nutzen Sie bonnus, das Suchportal der Uni online.

• Videos im Netz, z.B. von Christian Spannagel von der PH Heidelberg (auf seinem
Youtube Channel).

Weiterhin hervorragend ist 3Blue1Brown mit seinem Youtube-Kanal. Ansehen!

Es gibt zu vielen Themen gute Videos, suchen Sie mal danach.

• Vielleicht wollen Sie Ihre Aufzeichnungen direkt schön im Computer setzen? Dann
nutzen Sie das TEX/LATEX System. Es erzeugt ausgesprochen schöne Dokumente,
ist kostenlos und früher oder später müssen Sie es sowieso lernen. Dieses Skript ist
mit MiKTeX für Windows erstellt worden. Andere Betriebssysteme werden auch
unterstützt, suchen Sie einfach im Netz nach “latex mybrandofoperatingsystem”.2

• Wolfram Alpha: kann gut rechnen, auch symbolisch.

• Als kostenlose Alternative zu teuren Computer Algebra Systemen wie Maple oder
Mathematica bietet sich SageMath an, auch online als SageMathCell. SageMath
programmiert sich in Python, das könnte sich als hilfreich erweisen.

• Kennen Sie den Google Graph Plotter? Geben Sie mal bei Google “sin(eˆx)” ein!

2LATEX kann einen in den Wahnsinn treiben. Aber das kann Word auch, habe ich mir sagen lassen. Sollten
Sie LATEX benutzen, werden Sie tex.sx lieben lernen. Eine gute Einführung findet sich in The Not So
Short Introduction to LATEX 2ε und Wikibooks LaTeX hat viele einfache Beispiele.
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• Sie wollen das Programmieren in C/C++ oder Python beginnen? MinGW für Windows
ist ein GNU C/C++, ADA und FORTRAN (!) Compiler, der ebenso in Cygwin
verfügbar ist. Wer Linux hat, hat gcc wahrscheinlich schon auf dem Rechner. Unter
Windows ist Microsoft Visual Studio Express für C/C++, C#, Visual Basic, Python
und F# kostenlos und sehr leistungsfähig. Nicht zuletzt kann man Python für alle
Betriebssysteme völlig frei laden und benutzen. Prima Sprache!

In Anhang F finden Sie eine Liste von Problemen und weitere Links, falls Sie sich
üben wollen.

• Sie programmieren gerne oder arbeiten lange Zeit an den gleichen Dateien, die Sie
immer weiter verändern (wie z.B. ein LATEX-Dokument)? Verwalten Sie Ihre Dateien
mit einem Sourcecode Management System wie Subversion, Mercurial oder Git. Sie
können damit jederzeit sehen, wann Sie welche Änderung gemacht haben, können
gleichzeitig mit vielen Anderen an Ihren Dateien arbeiten und haben obendrein ein
Backup mit unendlich vielen Generationen.

• Und wenn Sie jetzt schon so eifrig programmieren, dann vergessen Sie nicht, Test
Code zu schreiben. Am besten schon von Anfang an.

• Fragen zum Uni-Betrieb, Ärger mit dem Dozenten, Probleme mit dem Stoff? Die
Fachschaft Informatik weiß Rat.

• Ein vorletzter Tipp: Gehen Sie zum Uni-Sport! Es gibt dort fast alles (von Aikido
bis Zumba), es kostet nichts oder fast nichts, es macht Spaß und Sie sitzen sowieso
genug am Schreibtisch.

• Last but not least: schlafen Sie genug. “Was für ein lamer Tipp”, werden Sie denken,
aber es lohnt sich, auch akademisch! Ausgeschlafen können Sie sich Dinge besser
merken, sind emotional ausgeglichener und kommen nachweislich zu besseren Noten,
siehe auch “College students: getting enough sleep is vital to academic success”. Wer
gerne mehr dazu wissen will, dem sei das Buch “Why we sleep” von Matthew Walker
[Wal17] empfohlen. It’s a good and easy read.

1.5. Literatur

Teile dieses Vorkurses orientieren sich an der Vorlesung “Logik und diskrete Strukturen”
von Heiko Röglin aus dem WS 2012/13 [Rö17].

Aussagenlogik, die Definition von Termen und O-Notation finden sich auch in “Einführung
in die Informatik” von Küchlin und Weber, [KW05].

Eine schöne Übersicht über mathematische Sprache und Symbolik findet sich in dem PDF
“Einführung in Sprache und Grundbegriffe der Mathematik” von Markus Junker von der
Universität Freiburg [Jun10].

Eine etwas tiefere Einführung in die Mathematik mit vielen Aufgaben und Lösungen hält
der “Vorkurs Mathematik” von Georg Hoever bereit [Hoe14].

Immer wieder gute Dienste leistet die “kleine Enzyklopädie Mathematik” [KEM80], wird
aber leider nicht mehr aufgelegt. Sie lässt sich jedoch noch gebraucht kaufen.

Schön zu lesen und mit vielen interessanten Beispielen ist auch “Mathematics for Computer
Science” von Eric Lehman und Tom Leighton [LL04], per Download im Internet zu finden.
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2. Mathematische Sprache

Stimmen die Namen und Begriffe nicht, so ist die Sprache konfus.
Ist die Sprache konfus, so entstehen Unordnung und Mißerfolg.

[ . . . ] Darum muß der Edle die Begriffe und Namen korrekt benutzen
und auch richtig danach handeln können.

— Konfuzius, Gespräche, Buch XIII, 3.

Der Sinn mathematischer Symbolik ist, einen Sachverhalt exakt auszudrücken. Wir
bedienen uns dazu spezieller mathematischer Symbole und einer speziellen mathematischen
Sprache.

Die Aussage “etwas ist kleiner zehn” mag auf den ersten Blick klar erscheinen, es stellen
sich aber bei genauerer Betrachtung mehrere Fragen:

• Meinen wir nur ganze Zahlen oder Brüche oder noch was anderes?

• Sind negative Zahlen auch gemeint?

• Genau 10 oder nur so ungefähr? Echt kleiner oder kann es auch gleich sein?

• Ist vielleicht eine Länge gemeint? Wenn ja, in welcher Richtung gemessen?

Um solche Unklarheiten zu vermeiden, verwenden wir eine genaue Schreibweise von klar
definierten Symbolen. Leider ist selbst in der Mathematik “klar definiert” nicht immer ganz
klar. So gibt es zum Beispiel verschiedene Auslegungen zu dem Begriff der “natürlichen
Zahl”. Solche Unklarheiten werden dann z.B. durch ein Symbolverzeichnis (siehe Anhang B)
eines Buches geklärt.

Trotzdem ist mathematische Sprache wesentlich genauer als natürliche Sprache. Wichtig
für Sie zu lernen ist zweierlei:

1. Wie drücke ich mich klar in dieser Sprache aus? Unser Beispiel schreiben wir klarer
so: “Sei x ∈ R mit x < 10”.

2. Es bleibt trotz alledem Sprache, also ein Mittel der Kommunikation. Es sollte kein
blinder Formalismus werden. Wenden Sie sich an den Leser, um Ihre Gedanken
möglichst einfach und klar darzustellen.

Zu üben, sich zwischen diesen beiden Punkten zu bewegen, ist unter anderem Ziel dieses
Vorkurses.

Mathematische Sprache ist typischerweise nicht sehr schön (im Sinne von “eloquent”).
Schlimmer noch, sie ist oft sehr repetitiv, langweilig und variantenarm. Das ist leider der
Sinn der Sache, da es für uns sehr sinnvoll ist, immer die gleichen Wörter zu nutzen, die
wir vorher hoffentlich einmal definiert haben. Nur so können wir uns exakt ausdrücken.

In diesem Skript stehen die englischen Fachbegriffe immer in Klammern hinter den deut-
schen, da Sie häufig auch englische Texte lesen werden und wer kommt schon auf die Idee,
dass ein Körper im Englischen field heißt? Überhaupt sollten Sie sich um ein gutes Englisch
bemühen in der Reihenfolge: Lesen, Schreiben, Hören, Sprechen, da wenige Aufgaben für
Informatiker vorstellbar sind, in denen das nicht wichtig sein wird. Zu diesem Thema gibt
es auch Kurse der Uni.

Anhang C enthält eine Tafel der griechischen Buchstaben, die oft in mathematischen Texten
vorkommen (man hat sonst einfach zu wenige Buchstaben). Sie erleichtern sich das Lesen,
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Sprechen und sogar das Verständnis der Texte, wenn Sie die Buchstaben benennen und
aussprechen können.

Es gibt viele normale Worte, die in der Mathematik eine genau definierte Bedeutung haben.
Im Laufe des Vorkurses werden wir davon einige kennenlernen, wie z.B. “geordnetes Paar”,
“genau dann, wenn”, “beliebig, aber fest”, “fast alle”, “trivial” oder “ohne Beschränkung
der Allgemeinheit”.

Im Folgenden führen wir einige Vokabeln und Schreibweisen ein, die dann später mit
weiterem Inhalt gefüllt werden. Im Moment geht es uns nur um die mathematische
Sprache.

2.1. Term, Gleichung, Ungleichung

Als Term bezeichnen wir wohlgeformte mathematische Ausdrücke, die aus Zahlen, Unbe-
stimmten, Klammern und Operatoren (+, −, ·, :) bestehen. Sie bilden die gültigen Worte
der mathematischen Sprache. D.h., ein Term enthält kein Gleichheits- oder Ungleichheits-
zeichen.

Zwei Terme, welche durch die Vergleichsoperation “=” verbunden sind, nennen wir Glei-
chung (engl. equation).

Beispiel 2.1.1 (Pythagoras): Seien a, b, c ∈ R die Seitenlängen einen rechtwinkligen
Dreiecks, wobei die Seite der Länge c gegenüber des rechten Winkels liegt. Dann gilt die
Gleichung

a2 + b2 = c2.

Sowohl “a2 + b2” als auch “c2” sind Terme, aber auch nur “a2” ist ein Term. Kein Term
dagegen ist “a2 +” (nicht wohlgeformt, da das rechte Argument für “+” fehlt). ./

3

Terme, welche einen Vergleichsoperator wie “<”, “≤”, “>”, “≥” oder “ 6=” beinhalten,
nennen wir Ungleichungen (engl. inequality).

2.2. Rechengesetze

Vorab seien einige Rechengesetze wiederholt, die Sie aus R kennen. In Kapitel ?? werden
wir algebraische Strukturen kennenlernen, für die manche dieser Gesetze nicht gelten.

Seien a, b, c ∈ R. Dann gelten folgende Rechenregeln:

(a+ b) + c = a+ (b+ c), (Assoziativität der Addition)
(a · b) · c = a · (b · c), (Assoziativität der Multiplikation)

a+ b = b+ a, (Kommutativität der Addition)
a · b = b · a, (Kommutativität der Multiplikation)

(a+ b) · c = a · c+ b · c. (Distributivität)

Diese Regeln folgen (wie wir in Abschnitt ?? sehen werden) aus der Tatsache, dass R ein
Körper ist.

Achten Sie auf diese “Vokabeln”. Diese Worte kommen immer wieder vor.

3Dieses Zeichen benutzen wir, um das Ende eines Beispiels zu markieren.
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2.3. Konventionen

Es gilt als Konvention, dass das Rechenzeichen “·”, welches meist für die Multiplikation
steht, nicht geschrieben werden muss.

D.h., folgende Terme sind gleich:

2 · a = 2a,
a · b · c = abc.

Im Zusammenspiel mit dem Zeichen “+”, welches meist für die Addition steht, gilt Punkt-
vor-Strichrechnung. D.h., ohne Angabe von Klammern bindet das Zeichen “·” stärker als
das Zeichen “+”:

2 · a+ b = (2 · a) + b,

a+ b · c = a+ (b · c).

Das kennen Sie alle aus der Schule. Wichtig zu wissen ist hier, dass das Ganze eine
syntaktische Konvention ist, d.h., es gilt auch, falls die beiden Zeichen für etwas Anderes
stehen als Multiplikation und Addition. Das wird uns in Kapitel ?? beschäftigen.

2.4. Summen- und Produktschreibweise

Zur Addition von mehreren Summanden, die man abhängig von einer Index- oder Lauf-
variable beschreiben kann, benutzt man gerne das Summenzeichen ∑. Die Laufvariable
nimmt alle ganzzahligen Werte von ihrem Startwert bis zum Endwert an, inklusive dieser
beiden.

Beispiel 2.4.1:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =
10∑

i=1
i,

1 + 1
2 + 1

4 + 1
8 + 1

16 =
4∑

i=0

1
2i
.

./

Beachten Sie, dass der Name der Indexvariable (hier i) keinen Einfluss auf das Summe hat.
Es handelt sich um eine gebundene Variable. 4

Wenn der Anfangswert der Indexvariablen größer ist als sein Endwert, dann ist die Summe
leer und ihr Wert ist 0:

n∑
i=n+1

i = 0.

4Für die Programmierer unter Ihnen: in C/C++ könnte man eine Summe so schreiben:

sum = 0;
for (int i = start; i <= end; ++i)

sum += term(i);

Beachten Sie, dass i ein Integer ist und jeweils um 1 erhöht wird und dass die obere Grenze in der
Schleife auch durchlaufen wird (i <= end).
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Manchmal ist der Gebrauch von Klammern ratsam, da sonst nicht klar ist, was alles
summiert wird. Was meint wohl

∑n
i=0 i−1? Wollte der Autor

∑n
i=0(i−1) oder (

∑n
i=0 i)−1

sagen?

Ebenso gibt es das Produktzeichen ∏ zur Darstellung von Produkten aus mehreren Fakto-
ren.

Beispiel 2.4.2:

6! = 1 · 2 · 3 · 4 · 5 · 6 =
6∏

i=1
i

./

Beachten Sie die Punkt-vor-Strichrechnung! Da das
∏
-Zeichen eine Abfolge von Fakto-

ren darstellt, müssen Sie klammern, falls die Faktoren Additionen oder Subtraktionen
enthalten.

Beispiel 2.4.3:

(a1 − 1)(a2 − 2)(a3 − 3) =
3∏

i=1
(ai − i) 6=

3∏
i=1

ai − i

./

Auch hier gibt es ein leeres Produkt, welches den Wert 1 hat:
n∏

i=n+1
i = 1.

Summen- und Produktzeichen werden uns wieder begegnen in Abschnitt ??. Ähnliche
Schreibweisen für andere Operationen lernen wir schon in Kapitel 3 kennen.

Aufgabe 2.4.1: Schreiben Sie mit Summenzeichen:

a) −1 + 4 + 9 + 14 + 19

b) 60 + 30 + 20 + 15 + 12 + 10
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3. Logik

Young man, in mathematics you don’t understand things.
You just get used to them.

— John von Neumann 5

3.1. Aussagenlogik

Mit Hilfe der Aussagenlogik (engl. propositional calculus) können wir Elementaraussagen
verknüpfen und auf ihren Wahrheitswert untersuchen. Elementaraussagen sind wahr oder
falsch und nicht weiter zerlegbar. 6 7

Definition 3.1.1 (Aussage): Nach Aristoteles 8 ist eine Aussage (engl. proposition) in
unseren Sinne ein sprachliches Gebilde, von dem es sinnvoll ist, zu fragen, ob es wahr
(engl. true) oder falsch (engl. false) ist.

Man nennt dies zweiwertige Logik: jede Aussage ist entweder wahr oder falsch, dies ist ihr
Wahrheitswert (engl. truth value).

Beispiel 3.1.1: Einige Aussagen:

1. Alle Studierenden sind Menschen.

2. Alle Menschen sind Studierende.

3. Es gibt Außerirdische.

4. Es gibt unendlich viele Primzahlen.

5. Es gibt unendlich viele Primzahlzwillinge (zwei Primzahlen, deren Differenz 2 ist).

Man kann zeigen, dass die Aussagen 1 und 4 wahr sind. Aussage 2 ist jedoch falsch,
solange auch nur ein Mensch existiert, der kein Student und keine Studentin ist. Über den
Wahrheitswert der 3. und der 5. Aussage können wir zum heutigen Zeitpunkt kein Urteil
abgeben, wir wissen es nicht. Trotzdem sind es valide Aussagen.

Keine Aussagen im mathematischen Sinne sind:

1. Bitte komm nach Hause. (Was könnte hier wahr oder falsch sein?)

2. Wie geht’s?

3. Du bist böse. (Dies ist eine moralische Äußerung)

4. Groß. (Das ist nur ein Wort, es ist nicht wahr oder falsch)

5. Colorless green ideas sleep furiously. (Noam Chomsky, 1957: Ein grammatikalisch
korrekter, aber unsinniger Satz. Er ist weder wahr noch falsch)

./

5Amerikanischer Mathematiker, Physiker und Informatiker ungarischer Abstammung, 1903–1957
6Weiterführend und vertiefend siehe [KW05, Kap. 16].
7Wenn Sie es gerne multimedial mögen: Vorlesung über Aussagenlogik als Video von Christian Spannagel.
8Griechischer Philosoph und Schüler des Platon, 384–322 v. Chr.
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3.2. Operationen auf Aussagen

Im Folgenden seien A und B Aussagen. Wir sagen “es gilt A” oder “A gilt nicht”. Eine
Aussage hat immer einen der Werte wahr oder falsch. Wir stellen die Werte wahr und falsch
häufig auch als 1 und 0 (oder w/f oder T/F) dar.

Manche Aussagen sind elementare Aussagen (“Es regnet.”, “Der Boden ist nass.”, “Es ist
dunkel.”). Alle anderen Aussagen werden aus solchen elementaren Aussagen und Operatoren
zusammengesetzt (“Wenn es regnet, ist der Boden nass.”).

Wahrheitswerte bzw. Aussagen können wir durch verschiedene Operationen (deren Ope-
ratoren heißen Junktoren) miteinander verknüpfen (die dadurch eine boolesche Algebra9

bilden können). Das heißt, eine oder mehrerere mit einem Operator verknüpfte Aussagen
bilden einen neue Aussage. Ob diese neue Aussage wahr oder falsch ist, hängt von den
Werten der beiden verknüpften Aussagen und dem Operator ab. Da es nur endlich viele
mögliche Werte für die ursprünglichen Aussagen gibt, können wir diese einfach alle auflisten.
Dadurch entsteht eine Wahrheitstabelle (engl. truth table). Ein Operator ist durch seine
Wahrheitstabelle eindeutig bestimmt.

Wenn zwei Aussagen A und B für alle möglichen Wahrheitswerte gleich sind, schreiben wir
A ≡ B. Wir verwenden hier diese besondere Schreibweise, damit sie nicht mit den Zeichen
“=” und “⇔” verwechselt werden kann. Eine andere verbreitete Schreibweise ist '.

Die einfachste Operation ist die Negation, oft auch als NOT bezeichnet: das Gegenteil
einer falschen Aussage ist eine wahre Aussage und ebenso ist das Gegenteil einer wahren
Aussage eine falsche Aussage (tertiam non datur). In der Schreibweise der Logik wird für
die Negation das Zeichen “¬” verwendet, gesprochen “nicht”. Häufig schreibt man auch A
statt ¬A. Die Wahrheitstabelle für die Negation sieht folgendermaßen aus:

A ¬A
f w
w f

Die Konjunktion (auch AND oder “Und”) ist wahr, falls beide Teilaussagen wahr sind; ansons-
ten ist sie falsch. Zum Beispiel bedeutet “die Tür kann geöffnet werden, wenn der Schlüssel
gedreht wurde und die Klinke gedrückt wurde”, dass eine der beiden Aktionen alleine nicht
ausreichend ist. Das mathematische Symbol für AND ist “∧”. Die Wahrheitstabelle sieht so
aus:

A B A ∧B
f f f
f w f
w f f
w w w

Die Disjunktion (auch OR oder “(inklusives) Oder”) ist wahr, falls mindestens eine der
beiden Teilaussagen wahr ist. Beispielsweise sagt der Satz “Ich komme nach Hause, wenn
es regnet oder dunkel wird” aus, dass einer der beiden Gründe ausreichend ist. Vorsicht!

9nach George Boole, englischer Mathematiker, 1815–1864
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Unser normalsprachliches “Oder” ist meist ein exklusives Oder (siehe unten). Der Satz
“Trinkst du Bier oder Wein?” bedeutet eben meist nicht, dass man beides möchte.

Das mathematische Symbol für OR ist “∨” und dies ist seine Wahrheitstabelle:

A B A ∨B
f f f
f w w
w f w
w w w

Die exklusive Oder (XOR, auch: die Kontravelenz) ist wahr, falls genau eine der beiden
Teilaussagen wahr ist. Das mathematische Symbol dafür ist nicht eindeutig, wir verwenden
hier “⊕”. A⊕B wird ausgesprochen “entweder A oder B” oder einfach “XOR” oder “EXOR”.

A B A⊕B
f f f
f w w
w f w
w w f

Wie die XOR-Wahrheitstabelle zeigt, ist XOR selbstinvers, das heißt “A⊕A ≡ f”. Man kann
XOR auch aus AND, OR und NOT zusammensetzen:

A⊕B ≡ (A ∧ ¬B) ∨ (¬A ∧B), alternativ:
A⊕B ≡ (A ∨B) ∧ ¬(A ∧B).

Die Implikation oder Folgerung ist dann wahr, wenn aus der ersten Aussage die zweite
folgt. Aus einer falschen Aussage darf sowohl etwas Falsches oder Wahres folgen (ex falso
quodlibet: jeder Schluss aus Falschem ist zulässig); aus einer wahren Aussage darf aber
nur etwas Wahres folgen. Mit anderen Worten: aus einer wahren Aussage darf nie etwas
Falsches folgen, alles andere ist erlaubt. Man sagt: “aus A folgt B” oder “wenn A, dann
B”. Das Symbol ist “⇒” und dies ist die Wahrheitstabelle:

A B A⇒ B

f f w
f w w
w f f
w w w

Auch die Implikation lässt sich mit einfacheren Operationen ausdrücken:

A⇒ B ≡ ¬A ∨B.

Man sagt auch “A ist eine hinreichende Bedingung für B”. Das bedeutet, wenn A vorliegt,
dann folgt daraus auch B.

Davon ist zu unterscheiden, dass A eine notwendige Bedingung für B ist. Das bedeutet,
dass es kein B gibt ohne A. A ist also eine conditio sine qua non, eine Bedingung, ohne
die es nicht geht. Formal schreiben wir B ⇒ A oder A⇐ B.
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Vorsicht! Die logische Implikation, wie hier geschildert, kann unserer natürlichen Sprache
widersprechen und Zusammenhänge nahelegen, die keine sind. Man nennt das auch die
Paradoxien der materialen Implikation. Die logische Aussage “Wenn London in England
liegt, dann ist ein Fuchs ein Säugetier” ist logisch wahr, aber es existiert kein kausaler
Zusammenhang, obwohl es so klingt. Schlimmer noch: “Wenn London in Frankreich liegt,
dann ist ein Fuchs ein Säugetier” ist formal ebenfalls wahr!

Als letztes bleibt noch die Äquivalenz . Das mathematische Symbol ist “⇔” und man sagt:
“A genau dann, wenn B”, “A dann und nur dann, wenn B” oder “A ist äquivalent zu B”
(gelegentlich auch abgekürzt als “gdw.” und in englischen Texten manchmal geschrieben
als “iff”, mit zwei “f”). Es bedeutet, dass beide Teilaussagen immer zur gleichen Zeit wahr
oder falsch sind. Zum Beispiel: “eine ganze Zahl heißt gerade genau dann, wenn sie ohne
Rest durch 2 teilbar ist”. Die Wahrheitstabelle dazu ist:

A B A⇔ B

f f w
f w f
w f f
w w w

Man sagt auch, dass A notwendig und hinreichend für B ist, daher auch die Schreibweise.
In Formeln: A⇔ B ≡ (A⇒ B) ∧ (A⇐ B).

Zum Beschreiben von allen zweiwertigen Operationen reichen die Operationen AND, OR und
NOT. 10 Daher konnten wir aus ihnen die anderen Operationen aufbauen. Allgemein kann
man jede n-wertige boolesche Operation aus diesen drei basishaften Operationen aufbauen,
z.B. mit der disjunktiven Normalform (DNF). Die erste Formel für XOR ist in DNF.

Es gibt eine Rangfolge der Operatoren (engl. operator precedence), die angibt, welcher
Operator stärker bindet. Ohne diese wäre die Aussage A ∨B ∧ C mehrdeutig, könnte sie
doch (A ∨ B) ∧ C oder A ∨ (B ∧ C) bedeuten. Die Rangfolge der Operatoren von stark
nach schwach bindend ist:

• Klammern (sind kein Operator),

• Negation, ¬; Quantoren, ∀, ∃ (siehe Kapitel 3.5)

• Konjunktion, ∧,

• Disjunktion, ∨,

• Implikation, ⇒,

• Äquivalenz, ⇔,

• Aussagenlogische Äquivalenz, ≡.

Damit ist A ⇒ B ⇔ ¬A ∨ B immer wahr und sieht geklammert so aus: (A ⇒ B) ⇔
((¬A) ∨B). Es ist aber besser, zu viele Klammern zu setzen als zu wenige, wenn dadurch
das Verständnis erleichtert wird.

10Sie sind hinreichend, aber nicht notwendig! Alleine mit der NAND oder NOR Operation geht es auch. Wissen
Sie, wie?
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Aufgabe 3.2.1: Gegeben seien die folgenden Aussagen:
A: Es ist eiskalt.
B: Es schneit.

Drücken Sie die nachfolgenden Sätze als aussagenlogische Formeln mit Hilfe der Aussagen-
variablen A und B aus.

a) Es ist eiskalt und es schneit.

b) Es ist eiskalt, aber es schneit nicht.

c) Es ist nicht eiskalt und es schneit nicht.

d) Entweder es schneit oder es ist eiskalt (oder beides).

e) Entweder es schneit oder es ist eiskalt, aber es schneit nicht, wenn es eiskalt ist.

f) Wenn es schneit, ist es eiskalt.

Aufgabe 3.2.2: Zeigen Sie mittels Wahrheitstabelle:

1. A⊕ w ≡ ¬A

2. A⊕A ≡ f

3.3. Gesetze für Aussagen

Wir nennen zwei Aussagen A und B äquivalent, wenn sie unter allen Belegungen denselben
Wahrheitswert annehmen, das heißt, wenn ihre Wahrheitstabellen identisch sind. Wir
schreiben dann A ≡ B.11

Nach der Definition der Äquivalenz ist dann die Aussage A ⇔ B immer wahr und wir
nennen sie eine Tautologie oder allgemeingültig. Eine einfache Aussage, die immer wahr
ist, ist z.B. A ∨ ¬A.

Das Gegenteil wäre eine Kontradiktion oder ein Widerspruch. Das ist eine Aussage, die
immer falsch ist. Ein Beispiel dafür ist A ∧ ¬A.

In der folgenden Tabelle sind einige Gesetze zu Aussagen aufgeführt.

11siehe auch [KW05, Kapitel 16].
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Konstanz: A ∧ ¬A ≡ f
A ∨ ¬A ≡ w

Doppelte Negation: ¬¬A ≡ A
Assoziativität: (A ∨B) ∨ C ≡ A ∨ (B ∨ C)

(A ∧B) ∧ C ≡ A ∧ (B ∧ C)
Kommutativität: A ∨B ≡ B ∨A

A ∧B ≡ B ∧A
Idempotenz: A ∨A ≡ A

A ∧A ≡ A
Absorption: A ∨ (A ∧B) ≡ A

A ∧ (A ∨B) ≡ A
Neutralität: A ∨ f ≡ A

A ∧ w ≡ A
Distributivität: A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)
De Morgansche Gesetze: 12 ¬(A ∨B) ≡ ¬A ∧ ¬B

¬(A ∧B) ≡ ¬A ∨ ¬B

Hier sind noch einige weitere Gesetze und Definitionen, die man auch häufiger braucht:

Konstanz: A⊕A ≡ f
Assoziativität: (A⊕B)⊕ C ≡ A⊕ (B ⊕ C)
Kommutativität: A⊕B ≡ B ⊕A

A⇔ B ≡ B ⇔ A

Neutralität: A⊕ f ≡ A
Äquivalenz: A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)
Exklusives Oder: A⊕B ≡ (A ∨B) ∧ ¬(A ∧B)
Implikation: A⇒ B ≡ ¬A ∨B
Prinzip der Kontraposition: A⇒ B ≡ ¬B ⇒ ¬A

Aufgabe 3.3.1: NOT, AND und OR reichen zum Ausdrücken von allen möglichen zweistelligen
logischen Operation. Aber könnte man alle auch mit weniger als drei elementaren Operation
ausdrücken? Welchen?

Aufgabe 3.3.2: Zeigen Sie:

a) (A⇒ B) ∨ (A⇒ C) ≡ A⇒ (B ∨ C)

b) (A⇒ B) ∧ (A⇒ C) ≡ A⇒ (B ∧ C)

Aufgabe 3.3.3: Zeigen Sie, dass die beiden Definitionen für XOR aussagenlogisch äquivalent
sind. Benutzen Sie dazu die Gesetze zu Aussagen.

12Augustus De Morgan, englischer Mathematiker, 1806–1871
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3.4. Prädikatenlogik

Mittels Prädikatenlogik (engl. predicate logic) können wir Aussagen formulieren, ohne
dazu ein bestimmtes Element betrachten zu müssen. Wir können also Eigenschaften
formulieren.

Mittels Quantoren und Prädikaten können wir Aussagen über mehrere Elemente machen
und Eigenschaften verallgemeinern.

Definition 3.4.1 (Prädikat): Ein Prädikat erlaubt das Einsetzen einer festen Anzahl von
Variablen und liefert darauf einen Wahrheitswert zurück. Ein Prädikat, welches n Variablen
annimmt, nennen wir n-stellig.

Beispiel 3.4.1: Das Prädikat “. . . ist fiktional” liefert auf das Einsetzen von “Moria”,
“Donald Duck” oder “Elysium” den Wahrheitswert wahr, auf das Einsetzen von “Jackie
Kennedy” oder “Ian McKellen” den Wahrheitswert falsch.

Eine Eigenschaft wie “x < 5” ist ebenso ein Prädikat, welches z.B. für x = 3 den
Wahrheitswert wahr und für “x = 10” den Wahrheitswert falsch zurückgibt. ./

Im Folgenden bezeichnen wir Prädikate mit Großbuchstaben und Variablen, die das
Prädikat annimmt, mit Kleinbuchstaben. Also ist P (x) ein einstelliges Prädikat.

3.5. Quantoren

Jetzt definieren wir Quantoren (engl. quantifiers).

Definition 3.5.1 (Allquantor): Sei P (x) ein einstelliges Prädikat. Um auszusagen, dass
das Prädikat P (x) für alle x gilt, schreiben wir ∀x : P (x), gelesen: “für alle x gilt P (x)”.
“ ∀” heißt Allquantor (engl. universal quantifier).

Formal: Enthalte die Folge der xi alle x, dann definieren wir:

∀x : P (x) ≡
∧
i

P (xi) ≡ P (x1) ∧ P (x2) ∧ P (x3) ∧ . . .︸ ︷︷ ︸
alle xi

Definition 3.5.2 (Existenzquantor): Sei P (x) ein einstelliges Prädikat. Um auszusagen,
dass P (x) für mindestens ein x gilt, schreiben wir ∃x : P (x) und lesen “es existiert ein x
für das P (x) gilt”. “ ∃” nennt sich Existenzquantor (engl. existential quantifier).

Formal: Enthalte die Folge der xi alle x, dann definieren wir:

∃x : P (x) ≡
∨
i

P (xi) ≡ P (x1) ∨ P (x2) ∨ P (x3) ∨ . . .︸ ︷︷ ︸
alle xi

Bemerken Sie, dass beide Quantoren eine Aussage über alle x machen, also alle Elemente
aller Mengen 13 (inklusive Zahlen, Studierender und Fahrräder). Meist möchte man
spezifischere Aussagen machen und gibt die Grundmenge direkt mit an. Sei M eine Menge,
dann ist

∀x ∈M : P (x) := ∀x : (x ∈M ⇒ P (x)).
13Siehe nächstes Kapitel.
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Und für den Existenzquantor:

∃x ∈M : P (x) := ∃x : (x ∈M ∧ P (x)).

Ebenso kann man direkt Bedingungen angeben: ∀ε > 0 : 1
n < ε. Auch das schreibt sich

formal exakt: ∀ε : (ε > 0⇒ 1
n < ε). Das Analoge gilt für ∃.

Der Allquantor verallgemeinert ein Prädikat auf eine Menge von Elementen. Da diese
Aussage für alle Elemente der Menge wahr sein muss, genügt ein einziges Gegenbeispiel,
um die Aussage zu widerlegen. Z.B. ist die Aussage

∀x ∈ N : (x ist Primzahl ⇒ x ist ungerade)

falsch, da es ein (einziges) Element gibt, für das das nicht stimmt.

Wenn “∅” die leere Menge bezeichnet, dann ist die Aussage ∀x ∈ ∅ : A(x) wahr für ein
beliebiges Prädikat A(x). Es gibt kein x, für das die Aussage falsch wäre.

Das lässt sich auch einfach beweisen:

∀x ∈ ∅ : A(x) ≡ ∀x : (x ∈ ∅ ⇒ A(x))
≡ ∀x : (f ⇒ A(x))

Aus der Definition der Implikation wissen wir aber, dass eine Folgerung aus etwas Falschem
immer wahr ist:

∀x ∈ ∅ : A(x) ≡ ∀x : w
≡ w.

Umgekehrt ist ∃x ∈ ∅ : A(x) falsch, da kein x existiert, für das die Aussage wahr wäre. Der
Beweis funktioniert analog.

Die Schreibweise für Quantorenaussagen ist nicht einheitlich. Man liest ∀x : P (x), ∀xP (x)
oder ∀x.P (x).

In der Aussage ∀x : P (x) bezeichnen wir x als gebundene Variable, da sie an den Quantor
gebunden ist. Im Gegensatz dazu ist in der Aussage ∀x : P (x, y) die Variable y eine freie
Variable.

Quantoren beziehen sich auf so wenig wie möglich (solange und stehen damit auf der Höhe
der Negation in der Rangfolge der Operatoren (siehe Seite 12). D.h., ∀x : P (x)⇔ Q(y) ist
das Gleiche wie (∀x : P (x))⇔ Q(y). Sonst müssen Sie klammern: ∀x : (P (x)⇔ Q(y)). Im
Zweifel sollten Sie hier (möglicherweise überflüssige) Klammern setzen, um Ihre Intention
klar zu machen.

Beispiel 3.5.1: Benutzung von Quantoren:

• ∀x ∈ {2, 4, 6} : x ist gerade

• ∃x ∈ {2, 4, 6} : x ≤ 4

• ∀ε > 0 : ∃n0 ∈ N : ∀n ≥ n0 : 1
n < ε

Man sagt: “Für alle ε > 0 existiert ein n0 aus N, sodass für alle n ≥ n0 gilt: 1
n < ε.”

• ∀x ∈ N : (x > 4⇒ x2 < 2x)
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./

Es gibt auch einen Quantor, der aussagt, dass ein Prädikat genau einmal wahr ist (Einzig-
keitsquantor). Er ist so definiert, für ein Prädikat B(x):

∃!x : B(x) := ∃x : (B(x) ∧ ∀y : (B(y)⇒ y = x)).

Aufgabe 3.5.1: Schreiben Sie mittels Quantoren:

a) Die Monotonie der Addition: für x, y, z ∈ N gilt: aus x < y folgt x+ z < y + z.

b) Den großen Fermatschen Satz:14 Für kein N 3 n > 2 existieren x, y, z ∈ N für die
gilt: xn + yn = zn.

c) Die Goldbachsche Vermutung: Jede gerade Zahl, die größer als 2 ist, ist Summe
zweier Primzahlen.

Aufgabe 3.5.2: Definieren Sie einen Quantor ∃=2a : B(a), der ausdrückt, dass ein Prädikat
für genau zwei Elemente gilt.

3.6. Quantorenregeln

Sei A eine Aussage. Dann kann man die Negation einer Quantorenaussage direkt vor die
Aussage A ziehen, wenn man den Quantor “umdreht”:

¬(∀x : A(x)) ≡ ∃x : ¬A(x)
¬(∃x : A(x)) ≡ ∀x : ¬A(x)

Zur Motivation: Die Aussage ¬(∀x : A(x)) bedeutet, dass ∀x : A(x) falsch ist. Das bedeutet
aber, dass es mindestens ein x geben muss, sodass A(x) falsch ist. Das können wir mittels
Quantor schreiben als ∃x : ¬A(x).

Umgekehrt gilt für den Existenzquantor: Die Aussage ¬(∃x : A(x)) heißt, dass es kein x
gibt, für das A(x) gilt. Also gilt für alle x die Aussage A(x) nicht. Daher: ∀x : ¬A(x).

Wenn man annimmt, dass es nur zwei verschiedene Werte für x gibt, dann ergeben sich
aus den Quantorenregeln die De Morganschen Gesetze. 15

Aufgabe 3.6.1: Negieren Sie folgende Aussagen logisch:

a) Alle Studenten, die nicht Informatik studieren, sind doof.

b) Es existiert eine gerade Zahl, die nicht die Summe zweier Primzahlen ist. Für alle
geraden Zahlen gilt: Sie sind Summe zweier Primzahlen.

Aufgabe 3.6.2: Gegeben sei die Aussage “Jeder blaue Zwerg mag Schokolade”. Welche
der folgenden Behauptungen widerlegt die Aussage?

14im 17. Jahrhundert von Pierre de Fermat (1607–1665) formuliert, aber erst 1994 von Andrew Wiles
(geb. 1953) bewiesen.

15Übersicht über Quantorenregeln im Netz: http://www.reisz.de/qa.htm und http://www.reisz.de/q
a2.htm (secco).
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a) Kein Zwerg mag Schokolade.

b) Kein Zwerg mag Schokolade, und es gibt einen Zwerg der blau ist.

c) Kein Zwerg ist blau.

d) Kein Zwerg ist blau oder mag Schokolade.

e) Es gibt einen Zwerg, der nicht blau ist.

f) Es gibt einen Zwerg, der blau ist und keine Schokolade mag.

g) Es gibt einen Zwerg, der nicht blau ist und Schokolade mag.

h) Es gibt einen Zwerg, der nicht blau ist oder keine Schokolade mag.

i) ? Zeigen Sie a) mittels Prädikatenlogik.
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4. Mengen

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

— Leopold Kronecker 16 (1893)

4.1. Beschreibung

Nach Georg Cantor 17 ist eineMenge (engl. set) eine Ansammlung von wohlunterscheidbaren
Objekten der Anschauung oder des Denkens. Das können Zahlen sein, aber auch jede
andere Form von (evtl. abstrakten) Objekten. Auch andere Mengen können in einer Menge
enthalten sein. Wir werden uns mit diesem naiven Mengenbegriff begnügen, eine tiefere
Betrachtung liefert die axiomatische Mengenlehre in der Mathematik.

Sei M eine Menge und x ein Objekt dieser Menge, so sagen wir, dass x ein Element der
Menge M ist. Wir schreiben dafür x ∈M . Es muss entscheidbar sein, ob ein Element x
in der Menge M enthalten ist oder nicht, das nennt sich die Wohldefiniertheit der Menge.
Ist x kein Element der Menge M , so schreiben wir x 6∈M . Wollen wir eine Aussage über
mehrere Elemente machen, so schreiben wir auch x, y ∈M .

Wir können endliche Mengen beschreiben durch Aufzählung ihrer Elemente. Dabei werden
die Elemente durch geschweifte Klammern (“{” und “}”) eingefasst:

B = {0, 1},
F = {rot, grün, blau},
A = {α, ω},
P = {1, x, x2, x3}.18

Die leere Menge (engl. empty set) (die Menge ohne Elemente) wird mit ∅ (oder auch mit
{}) bezeichnet.

∅ := {}.

Mengen sind ungeordnet (engl. unordered):

{2, 3, 5} = {5, 2, 3}.

Jedes Element kommt nur einmal in der Menge vor, selbst, wenn es mehrfach angeben
wird. Daher müssen die Elemente wohlunterscheidbar sein.

{6, 4, 6} = {4, 6}.

Wenn die Abfolge klar ist, können wir uns mit “. . . ” Schreibarbeit sparen:

D = {0, 1, 2, . . . , 9}.

Auf diese Weise kann man auch unendliche Mengen beschreiben:

G = {0, 2, 4, . . .}.

16Deutscher Mathematiker, 1823–1891
17Deutscher Mathematiker und Begründer der Mengenlehre, 1845–1918
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Wir können auch eine Menge definieren, indem wir eine Eigenschaft ihrer Elemente
beschreiben. Die folgende Zeile liest sich “die Menge aller x aus N mit der Eigenschaft: x
ist eine Primzahl”:

P = {x ∈ N | x ist eine Primzahl}.

Damit können wir die Prädikatenlogik aus Kapitel 3 benutzen, um Mengen zu definieren:

G′ = {x | ∃y ∈ Z : x = 2y}.

Es gibt einige häufig benutzte grundlegende Mengen, die zur besseren Kennzeichnung mit
einem doppelten senkrechten Strich geschrieben werden (in der englischsprachigen Literatur
schreibt man diese Mengen auch gerne fett, also N, Z oder R). Das sind unter anderem
diese:

• Die Menge der natürlichen Zahlen (engl. natural numbers): N := {1, 2, 3, . . .}.

• Die Menge der natürlichen Zahlen mit Null: N0 := {0, 1, 2, 3, . . .}.

• Die Menge der ganzen Zahlen (engl. integers): Z := {0,±1,±2,±3, . . .}.

• Die Menge der rationalen Zahlen (engl. rational numbers):
Q := {a

b | a ∈ Z, b ∈ N}.

• Die Menge der reellen Zahlen (engl. real numbers): R.

• Die Menge der komplexen Zahlen (engl. complex numbers): C := {a+ ib | a, b ∈ R},
wobei i die imaginäre Einheit ist und definiert ist als i2 = −1.

Sei x ein Element einer dieser Mengen, dann heißt x

• positiv, falls x > 0,

• negativ, falls x < 0,

• nicht-negativ (engl. non-negative), falls x ≥ 0.

Intervalle einer Menge werden durch ihre untere und obere Grenze angegeben. Dabei un-
terscheidet man offene (engl. open) und abgeschlossene Intervalle (engl. closed intervals).

• Das abgeschlossene Intervall [a, b] einer Menge M ist definiert als [a, b] := {x ∈M |
a ≤ x ≤ b}, das heißt, die Grenzen liegen im Intervall.

• Das offene Intervall (a, b) einer MengeM ist definiert als (a, b) := {x ∈M | a < x < b},
das heißt, die Grenzen sind nicht im Intervall enthalten.

• Es gibt auch halboffene Intervalle, beispielsweise ist das Intervall [a, b) einer Menge
M definiert als [a, b) := {x ∈M | a ≤ x < b}.

Die obere Intervallgrenze kann ∞ sein, resp. die untere Grenze −∞. Das ist eine Art zu
schreiben, dass auf dieser Seite keine Grenze existiert.19 Beachten Sie, dass die Seite mit
dem “∞”-Zeichen eine offene Grenze beschreibt, also runde Klammern zu benutzen sind.

18Kapitel ?? beschäftigt sich mit Mengen von Funktionen.
19Das ist ein Beispiel für abuse of notation: eine mathematische Schreibweise, die formal inkorrekt, aber

intuitiv (hoffentlich) richtig verstanden wird.
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Beispiel 4.1.1:

R≥0 := [0,∞)
R− := (−∞, 0)

./

Aufgabe 4.1.1: Geben Sie die Elemente der folgenden Mengen an:

a) x ∈ N : x < 4

b) x ∈ R : x2 = 1

c) x ∈ R : ∃y ∈ Q : xy = 1

d) x ∈ Z : x < 100 ∧ ∃y ∈ Z : y2 = x

4.2. Vereinigung und Schnitt

Wir können auf Mengen diverse Operationen anwenden.20 Die Operationen können wir sehr
schön mit den Methoden der Logik aus dem letzten Kapitel beschreiben und beweisen.

Oft benutzt man auch Venn-Diagramme, 21 um Beziehungen von Mengen darzustellen. Sie
sind sehr intuitiv, ersetzen aber keinen formalen Beweis.

Definition 4.2.1 (Mengenoperationen): Seien Mengen A und B gegeben, dann definieren
wir

• die Vereinigung (engl. union) C = A ∪B: C enthält alle Elemente aus A und alle
Elemente aus B. In der Sprache der Logik heißt das:

A ∪B := {x | x ∈ A ∨ x ∈ B}.

• Der Schnitt (engl. intersection) C = A ∩B: C enthält alle Elemente, die sowohl in
A als auch in B sind. Mittels der Logik definieren wir:

A ∩B := {x | x ∈ A ∧ x ∈ B}.

• Die Differenz (engl. set difference) C = A \B: C enthält alle Elemente aus A, die
nicht in B sind. Man sagt auch “das Komplement von B in Bezug auf A” oder “A
ohne B”. Die Definition lautet:

A \B := {x | x ∈ A ∧ x 6∈ B}.

Eine andere Schreibweise statt A \B ist B, wobei hier zuerst unklar bleibt, welches
die Obermenge ist.

20Video von Christian Spannagel über Mengenlehre.
21John Venn, englischer Logiker und Philosoph, 1834–1923
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4.3. Teilmengenbeziehungen

Definition 4.3.1 (Teilmengenbeziehungen): Weiterhin können wir Aussagen über das
Verhältnis zweier Mengen zueinander machen:

• Wir nennen A und B gleich, geschrieben A = B, falls gilt:

A = B := ∀x : (x ∈ A⇔ x ∈ B).

• Wir nennen A eine Teilmenge (engl. subset) von B, geschrieben A ⊆ B, falls alle
Elemente aus A auch in B liegen. Die Definition lautet:

A ⊆ B := ∀x : (x ∈ A⇒ x ∈ B).

• Umgekehrt heißt B Obermenge (engl. superset) von A: B ⊇ A.

• Eine echte Teilmenge (engl. proper subset) A ⊂ B (oder, noch expliziter: A ( B) ist
eine Teilmenge A von B mit A 6= B. Also:

A ⊂ B := A ⊆ B ∧A 6= B.

Analog B ⊃ A.

• Wir nennen A und B disjunkt (engl. disjoint), falls es kein Element gibt, welches in
beiden Mengen enthalten ist, also falls gilt: A ∩B = ∅.

Die Teilmengenbeziehungen für die uns wohlbekannten Mengen sehen so aus:

∅ ⊂ N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C.

Beispiel 4.3.1: Seien die Mengen A = {2, 3, 5, 7}, B = {1, 2, 4, 8}, C = {5, 7} gegeben.
Dann gilt:

C ⊆ A,
A ⊃ C,

A ∪B = {1, 2, 3, 4, 5, 7, 8},
A ∩B = {2},
A \B = {3, 5, 7},
B ∩ C = ∅,
A \ ∅ = A.

./

Aufgabe 4.3.1: Sei M = {−1, 0, 1}. Welche der folgenden Aussagen sind wahr?

a) M ⊆ N

b) M ⊆ Z

c) M ⊆M

d) M ∩ Z = M

e) M ∪ Z = M
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f) M ∪ {0, 1} = {0, 1}

g) M ∩ R = R ∩M

h) M ⊂ ((N \ Z) ∪ {0, 1})

i) M ⊂ ((Z \ N) ∪ {0, 1})

j) M ⊂ ((Z \ N) ∪ {−1, 0})

Einige Eigenschaften, die aus den Definitionen folgen, sind:

• Die Vereinigung der leeren Menge mit einer beliebigen Menge A ergibt A: A∪ ∅ = A.

• Der Schnitt aus der leeren Menge mit jeder Menge A ergibt die leere Menge: A∩∅ = ∅.

• Die leere Menge ∅ ist Teilmenge jeder Menge A: ∅ ⊆ A.

• Jede Menge A ist Teilmenge ihrer selbst: A ⊆ A. Die leere Mengen und die Menge
selbst nennt man auch die trivialen Teilmengen.

• Die Gleichheit zweier Mengen A und B gilt genau dann, wenn:

(A = B)⇔ (A ⊆ B ∧B ⊆ A).

Das ist teilweise einfacher zu beweisen als die Gleichheit nach der obigen Definition.

• Der Schnitt einer Menge A mit sich selbst und die Vereinigung mit sich selbst ergeben
wieder A:

A ∪A = A und A ∩A = A.

• Vereinigung und Schnitt sind assoziativ. Seien A, B und C Mengen, dann gilt:

(A ∪B) ∪ C = A ∪ (B ∪ C),
(A ∩B) ∩ C = A ∩ (B ∩ C).

• Die De Morganschen Gesetze gelten auch auf Mengen. Seien A, B und C Mengen
mit A ⊆ C und B ⊆ C. Die De Morganschen Gesetze besagen dann:

A ∩B = A ∪B, oder anders geschrieben
C \ (A ∩B) = (C \A) ∪ (C \B).

Ebenso:

A ∪B = A ∩B, oder anders geschrieben
C \ (A ∪B) = (C \A) ∩ (C \B).

Jetzt können wir die Gesetze der Logik benutzen, um aus den Definitionen der Mengenope-
rationen einige Eigenschaften zu beweisen:

Sei A eine Menge. Zu zeigen:

A ∩ ∅ = ∅.
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Beweis: Nach Definition von Schnitt ist das:

{x | x ∈ A ∧ x ∈ ∅} =
{x | x ∈ A ∧ falsch} =

{x | falsch} =
{} = ∅.

Nun beweisen wir die Assoziativität des Schnitts:

Seien A, B, C Mengen. Zu zeigen:

(A ∩B) ∩ C = A ∩ (B ∩ C)

Beweis: Nach Definition von Mengengleichheit heißt das:

∀x :
(
x ∈ (A ∩B) ∩ C ⇔ x ∈ A ∩ (B ∩ C)

)
Wähle ein x aus: fest, aber beliebig. Dann gilt:

x ∈ (A ∩B) ∩ C ⇔
x ∈ (A ∩B) ∧ x ∈ C ⇔

(x ∈ A ∧ x ∈ B) ∧ x ∈ C ⇔

Nach Definition ist ∧ assoziativ:

x ∈ A ∧ (x ∈ B ∧ x ∈ C)⇔
x ∈ A ∧ x ∈ (B ∩ C)⇔

x ∈ A ∩ (B ∩ C)⇔ x ∈ A ∩ (B ∩ C)

Auf beiden Seiten steht das Gleiche, daher gilt die Äquivalenz. Da x beliebig war, gilt die
Aussage für alle x und ist damit bewiesen.

Als Letztes beweisen wir eines der De Morganschen Gesetze:

Seien A, B, C Mengen mit (A ∪B) ⊆ C. Zu zeigen:

A ∪B = A ∩B

Oder, mit C als Obermenge von A und B:

C \ (A ∪B) = (C \A) ∩ (C \B)

Beweis: Nach Definition von Komplement:

{x | x ∈ C ∧ ¬(x ∈ (A ∪B))} =

Nach Definition von Vereinigung:

{x | x ∈ C ∧ ¬(x ∈ A ∨ x ∈ B)} =

Nach Anwendung von De Morgan:

{x | x ∈ C ∧ (x 6∈ A ∧ x 6∈ B)} =
{x | x ∈ C ∧ x 6∈ A ∧ x 6∈ B} =
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Wir erweitern (nach Idempotenz):

{x | x ∈ C ∧ x 6∈ A ∧ x ∈ C ∧ x 6∈ B} =

Nach Definition von Komplement & Schnitt:

{x | x ∈ (C \A) ∧ x ∈ (C \B)} = (C \A) ∩ (C \B)

Eine interessante Beobachtung: bei Mengen ist (im Gegensatz zu reellen Zahlen) der Fall
möglich, dass weder A ⊆ B noch A ⊇ B gilt! Das heißt, die Negation von A ⊆ B ist nicht
A ⊃ B, sondern ¬(A ⊆ B) oder A 6⊆ B. 22

Aufgabe 4.3.2: Zeigen Sie die Absorptionsgesetze für Mengen:

a) M1 ∪ (M1 ∩M2) = M1

b) M1 ∩ (M1 ∪M2) = M1

4.4. Weitere Operationen auf Mengen

Definition 4.4.1 (Kardinalität): Die Anzahl der Elemente einer endlichen Menge M heißt
Kardinalität (engl. cardinality) oder Mächtigkeit. Wir schreiben dafür |M |, manchmal
findet sich auch #M .23

Hat eine unendliche MengeM die gleiche Mächtigkeit wie N, d.h., existiert eine Bijektion 24

zwischen M und N, so sagt man M sei abzählbar unendlich und habe die Mächtigkeit
ℵ0 := |N|, gesprochen “Aleph Null” (der erste Buchstabe des hebräischen Alphabets). Die
Mengen Z und Q sind abzählbar.

Existiert eine solche Abbildung nicht, so nennt sich M überabzählbar. Z.B. ist R überab-
zählbar.

Beispiel 4.4.1: Sei A = {1, 2, 3}, dann ist |A| = 3.

Die leere Menge hat Mächtigkeit 0: |∅| = 0. ./

Definition 4.4.2 (Potenzmenge): Zu einer gegebenen Menge A ist die Potenzmenge (engl.
power set) P(A) die Menge aller Teilmengen von A.

P(A) = {B | B ⊆ A}.

Die Potenzmenge P(M) zu einer Menge M hat die Kardinalität 2|M |. Die trivialen
Teilmengen von A (∅ und A selbst) sind auch in der Potenzmenge enthalten.

Beispiel 4.4.2: Sei A = {1, 2, 3}, dann ist P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, {1, 2, 3}}. Nachzählen zeigt, dass |P(A)| = 2|A| = 8. ./

22Der Grund dafür ist, dass die Teilmengenbeziehung zwar eine partielle, aber keine totale Ordnung ist,
siehe Abschnitt ??.

23Die Kardinalität einer unendlichen Menge ist nicht so einfach anzugeben. Erstaunlicherweise gibt es hier
verschiedene Mächtigkeiten.

24Zum Begriff der Bijektivität siehe Abschnitt ??.
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Aufgabe 4.4.1: Zeigen Sie: A ⊆ B ⇒ P(A) ⊆ P(B).

Definition 4.4.3 (Kartesisches Produkt): Das kartesische Produkt A×B zweier Mengen
A und B ist die Menge aller geordneten Paare (a, b) mit a ∈ A und b ∈ B. “Geordnetes
Paar” bedeutet, dass die Reihenfolge von a, b wichtig ist, im allgemeinen also (a, b) 6= (b, a)
gilt. 25 Formal gilt:

A×B := {(a, b) | a ∈ A ∧ b ∈ B}.

Beispiel 4.4.3: Sei R = {1, 2, 3, . . . , 8} und L = {a, b, c, . . . , h}. Dann ist

R× L = {(1, a), (1, b), (1, c), . . . , (1, h),
(2, a), (2, b), (2, c), . . . , (2, h),
...
(8, a), (8, b), (8, c), . . . , (8, h)}.

./

Sei B das n-fache kartesische Produkt A1 × A2 × . . . × An von Mengen Ai, dann nennt
man ein Element von B ein n-Tupel. Das heißt: B = {(a1, a2, . . . , an) | ai ∈ Ai}. Ein Paar
ist also ein 2-Tupel.

25Wir schreiben “im allgemeinen (a, b) 6= (b, a)”, da es spezielle Belegungen von a, b gibt, für die es eben
doch gilt, z.B. hier für a = b.
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5. Datentypen

To program is to understand.

— Kristen Nygaard 26

In der Informatik beschäftigen wir uns unter anderem damit, mathematische Sachverhalte
in Programmen abzubilden und mit deren Hilfe Ergebnisse zu berechnen. Dazu müssen
wir Elemente von Mengen in Variablen speichern, um mit ihnen rechnen zu können. Diese
Variablen haben einen Datentyp (engl. data type), der bestimmt, wie sie gespeichert werden
und welchen Wertebereich sie haben.

Dieses Kapitel schlägt eine Brücke zwischen Theorie und Praxis. Wir werden sehen,
wie die theoretischen Konzepte der Mathematik sich in der Praxis des Programmierens
wiederfinden lassen.

5.1. Zahlensysteme

Mittels der Summennotation aus Abschnitt 2.4 können wir einen neuen Blick auf Zah-
lensysteme werfen. Welche Zahl wird beschrieben, wenn wir “138” schreiben? Normale
Konvention ist, dass wir in der Mathematik Zahlen im Zehnersystem notieren. Damit hat
die letzte Stellen den Wert 1, die zweitletzte den Wert 10, etc. Wir können es allgemeiner
schreiben:

Definition 5.1.1 (Dezimalnotation): Sei eine Zahl a im Dezimalsystem als eine Abfolge
von Ziffern gegeben, also als anan−1 . . . a0, wobei 0 ≤ ai ≤ 9. Dann können wir a auch
schreiben als 27

a =
n∑

i=0
ai · 10i.

Im obigen Beispiel ist dann a0 = 8, a1 = 3 und a2 = 1.

Die Dezimalschreibweise hat ihren Ursprung natürlich in der Anzahl unserer Finger. Die
Simpsons sollten eigentlich im Oktalsystem (engl. octal numeral system) rechnen, da sie
nur acht Finger haben (lediglich Gott hat zehn).

In der Informatik haben wir nur zwei “natürliche” Ziffern: 0 und 1, die ganz simpel die
Zustände “an” und “aus” darstellen. Damit bietet es sich für uns an, Zahlen im Dualsystem
oder Binärsystem (engl. binary numeral system) darzustellen. Wir verwenden hier einen
Index am Ende der Zahl, um das Zahlensystem kenntlich zu machen. Der Index gibt die
Basis des Zahlensystems in Dezimalschreibweise an. Die Dezimalzahl “13810” schreibt sich
in oktal also “2128” und in binär “100010102”.

Damit erweitern wir jetzt unsere Definition von Zahlensystemen:

26Norwegischer Informatiker und Pionier der Programmiersprachen, 1926–2002
27Sie erinnern sich an das Summenzeichen aus Abschnitt 2.4?
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Definition 5.1.2 (Notation in beliebigen Zahlensystem): Sei im Zahlensystem mit Basis
b ∈ N, b > 1 eine Zahl a als eine Abfolge von Ziffern gegeben, also als anan−1 . . . a0, wobei
0 ≤ ai < b. Dann können wir a schreiben als

a =
n∑

i=0
ai · bi.

Häufig werden Zahlen in der Programmierung auch in hexadezimal (kurz: “in hex”)
angegeben, das heißt in Basis 16. Die fehlenden Ziffern über der 9 werden durch die
Buchstaben a, b, c, d, e, f dargestellt. 138 wird in hex also als “8a16” geschrieben.

Viele Programmiersprachen bieten die Möglichkeit, Zahlen direkt in verschiedenen Zahlen-
systemen anzugeben. Dafür wird oft ein Präfix verwendet:

oktal binär hexadezimal
C/C++ 28 0 — 0x
Python 0o 0b 0x

Unsere Beispielzahl 138 schreibt sich also in C/C++ auch als 0212 oder 0x8a und in Python
auch als 0o212, 0b10001010 oder 0x8a.

Wie können Sie einfach eine Zahl nach binär konvertieren? Der folgende Python Code soll
das verdeutlichen:

from __future__ import print_function, division

def to_bin(z):
"""
Funktion zum Konvertieren nach Binaer.

Eingabe: Zahl z, nicht-negativ.
Ausgabe: Zahl zur Basis 2.
"""
s = ""
p = 2**(z.bit_length() - 1) # höchstes gesetztes Bit
while p > 0:

if p <= z:
z = z - p
s += "1"

else:
s += "0"

p = p // 2
return s

if __name__ == "__main__":
import sys
print(to_bin(int(sys.argv[1])))

28Ja, C/C++ hat keinen Präfix für Binärzahlen und ja, eine 0 leitet eine Oktalzahl ein! Das gibt wunderschöne
Bugs, wenn ein Vergleich mit 42 einfach nicht klappen will: if (a == 042) { ... }. ,

28
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Der Algorithmus geht alle Zweierpotenzen durch, von hoch nach niedrig und schreibt dann
jeweils eine “1” oder eine “0”.

Aufgabe 5.1.1: Berechnen Sie den Binärwert folgender Dezimalzahlen:

a) 4210

b) 12310

c) 40810

d) 23010

e) 16910

f) 314110

5.2. Skalare Datentypen

Jede Programmiersprache hat ihre eigenen Datentypen. Wir betrachten hier exemplarisch
die Datentypen aus C/C++ und Python. Die hier angegebenen Wertebereiche W gelten
für viele, aber nicht notwendigerweise alle Implementationen dieser Sprachen.

• C/C++ unsigned speichert nicht-negative ganze Zahlen kleiner als 232, also:
W = {x ∈ N0 | x < 232}.

• C/C++ int speichert ganze Zahlen zwischen −(231) und 231 − 1 inklusive, also:
W = {x ∈ Z | −(231) ≤ x < 231}.

• Python int speichert ganze Zahlen so lange der Speicher reicht. Für die meisten
praktischen Belange heißt das also: W = Z.

• C/C++ double und Python float speichern Gleitkommazahlen mit doppelter Ge-
nauigkeit (engl. floating point numbers with double precision) mit Betrag kleiner als
≈ 1.798 · 10308 und einer Genauigkeit von ca. 15 Dezimalstellen. Also:
W = {x ∈ R | x darstellbar als IEEE 754 Gleitkommazahl mit doppelter Genauigkeit
}.
Die Details der Gleitkommadarstellung sind knifflig und geben immer wieder Anlass
zum Staunen, siehe unten.

• C/C++ bool speichert die Wahrheitswerte true und false, Python bool speichert
die Wahrheitswerte True und False.
Eine Darstellung ist: W = {wahr, falsch}.

Es folgt ein kleiner Exkurs zu den Freuden der floating point Arithmetik. Siehe Floating
Point Arithmetic: Issues and Limitations für eine kurze Einführung zu Problemen von
floats in Python. Mehr unter The Perils of Floating Point für einige erstaunliche Effekte
(in FORTRAN, yikes!).

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) ...
Type "help", "copyright", "credits" or "license" for more information.
>>> a = 0.1
>>> sum = 0.0
>>> for i in range(10):
... sum += a
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...
>>> sum == a*10
False
>>> a*10
1.0
>>> sum
0.9999999999999999
>>> sum = 0.0
>>> for i in range(10):
>>> sum += a
>>> print("{:.30}".format(sum))
>>> 0.100000000000000005551115123126
>>> 0.200000000000000011102230246252
>>> 0.300000000000000044408920985006
>>> 0.400000000000000022204460492503
>>> 0.5
>>> 0.599999999999999977795539507497
>>> 0.699999999999999955591079014994
>>> 0.799999999999999933386618522491
>>> 0.899999999999999911182158029987
>>> 0.999999999999999888977697537484

Exkurs Ende. ,

Man darf also nicht glauben, dass alles, was man sich ausdenkt und als Programm
formuliert, auch genau so hinkommt, wie es der Programmcode suggeriert. Das Problem
in obigem Beispiel ist die mangelnde Genauigkeit. An anderer Stelle ist es oft der zu kleine
Wertebereich einer Variablen (der dann einen Überlauf (engl. overflow) erzeugt). Behalten
Sie das im Kopf, wenn Sie Probleme aus der Mathematik als Programm formulieren.

Jetzt haben wir Datentypen zur Darstellung von Werten aus N, N0, Z und R kennengelernt.
Wie aber stellt man Werte aus Q dar? Die Antwort: es gibt in C/C++ keinen eingebauten
Datentyp, um Werte aus Q exakt zu speichern, man kann ihn aber nachrüsten, z.B. durch
die Boost Rational Number Library. In Python wird eine Klasse mitgeliefert, die durch
den Befehl import fractions geladen werden kann.

Wir könnten uns den Datentyp auch selber schreiben. Skizzieren wir, was dazu nötig
wäre:

• Zwei Zahlen a, b ∈ Z mit b 6= 0,

• eine Funktion, die den größten gemeinsamen Teiler (ggT) errechnet, damit man
kürzen kann. 29 Das wird nötig z.B. für Vergleiche: 1

2 = 2
4 .

• eine Funktion, die auf das kleinste gemeinsame Vielfache erweitert, damit man zwei
Zahlen addieren kann: 1

2 + 1
3 = 5

6 .

29Siehe Abschnitt ??
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5.3. Mengen in C/C++ und Python

In C++ kann man Mengen durch das set Template deklarieren. Für die entsprechenden
Operationen auf Mengen werden Funktionen verwendet, die allerdings aufwändig zu
benutzen sind.

Python hat schönen Support für Mengen durch den Datentyp set, der einfach zu bedienen
ist. Die Operatoren sind stark der mathematischen Notation nachempfunden.

Wir listen hier einige der C++ Funktionen und Python Operatoren auf und ihre vergleichbare
Bedeutung in mathematischer Notation. Dabei ist x ein Element und A und B Mengen.

Math. Notation C++ Code Python Code
Ist Element von x ∈ A A.find(x) != A.end() x in A
Vereinigung A ∪B set_union() A | B
Schnitt A ∩B set_intersection() A & B
Differenz A \B set_difference() A - B
Gleichheit A = B A == B A == B
Teilmenge A ⊆ B includes() A <= B
Echte Teilmenge A ⊂ B includes() && A != B A < B
Obermenge A ⊇ B includes() A >= B
Echte Obermenge A ⊃ B includes() && A != B A > B

Es sollte klar sein, dass man aus praktischen Gründen mit den Mengenoperationen einer
Programmiersprache nur endliche Mengen darstellen und behandeln kann. Die Menge mit
allen Elementen wird dazu im Speicher des Rechners hinterlegt und der ist nun mal (engen)
Grenzen unterworfen. Prädikate wie x ∈ N kann man nicht über Mengenoperationen in
Programmiersprachen lösen.
So sehen die Python Operatoren “in action” aus:

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17) ...
Type "help", "copyright", "credits" or "license" for more information.
>>> A = {0,2,1}
>>> A
{0, 1, 2}
>>> B = {2,3}
>>> B
{2, 3}
>>> A & B
{2}
>>> A | B
{0, 1, 2, 3}
>>> A - B
{0, 1}
>>> A <= B
False
>>> B <= A
False
>>> 2 in A
True

Und jetzt kommt der entsprechende C++ Code. Man sieht, dass es hier einiges mehr an
syntaktischem Overhead gibt. Dafür ist der Code einiges schneller in der Ausführung.
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#include <iostream>
#include <set>
#include <algorithm>
#include <iterator>
using namespace std;

void set_out(const set<int>& S) {
for (auto x : S) cout << x << " ";
cout << endl;

}

void main() {
set<int> A, B, C, D, E;
A.insert(0);
A.insert(2);
A.insert(1);
set_out(A); // output: 0 1 2
B.insert(2);
B.insert(3);
set_out(B); // output: 2 3
set_union(A.begin(), A.end(), B.begin(), B.end(), inserter(C, C.begin()));
set_out(C); // output: 0 1 2 3
set_intersection(A.begin(), A.end(), B.begin(), B.end(), inserter(D, D.begin()));
set_out(D); // output: 2
set_difference(A.begin(), A.end(), B.begin(), B.end(), inserter(E, E.begin()));
set_out(E); // output: 0 1
cout << includes(A.begin(), A.end(), B.begin(), B.end()) << endl; // output: 0
cout << includes(B.begin(), B.end(), A.begin(), A.end()) << endl; // output: 0
cout << (B.find(2) != B.end()) << endl; // output: 1

}

Was lehrt uns das? Antwort: nicht jede Sprache ist gleichermaßen für jedes Problem
geeignet. Daher sollte man eine “passende” Sprache für das jeweilige Problem wählen, so
weit das möglich ist.

Ebenso lehrt es uns, dass Diskussionen á la “Sprache X ist besser als Sprache Y” zu wenig
führen. 30

5.4. Boolesche Operationen in Programmiersprachen

Natürlich können die Programmiersprachen C/C++ und Python die Operationen AND,
OR, XOR und NOT berechnen. Allerdings muss man unterscheiden zwischen bitweisen und
logischen Operationen.

Was wir in Kapitel 3 besprochen haben, nennt sich in den Programmiersprachen logische
Operationen. Diese schreiben sich folgendermaßen:

math. Notation C/C++ Python
Konjunktion A ∧B A && B A and B
Disjunktion A ∨B A || B A or B
Negation ¬A !A not A

30OK, alles ist besser als Intercal oder Whitespace! ,
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Sie liefern die Ergebnisse, die man von ihnen (mathematisch gesehen) erwartet und der
Datentyp ist bool in C/C++ oder Python.

Weiterhin gibt es aber auch bitweise Operationen. Das Vorhandensein dieser Operationen ist
eine besondere Eigenschaft von Programmiersprachen auf Binärrechnern, in der Mathematik
sind sie wenig gebräuchlich.

Bitweise Operationen arbeiten auf jedem Bit einer Ganzzahl-Variablen.31 Z.B. wird die
Zahl 42 binär dargestellt als 42 = 2 + 8 + 32 = 1010102, ebenso 15 = 1 + 2 + 4 + 8 = 11112.
Das binäre AND ist die Anwendung der Konjunktion auf jeder Binärstelle beider Werte: also
1010102 AND 11112 = 10102. Der Datentyp des Ergebnisses ergibt sich aus den Datentypen
der Operanden.

In unseren Programmiersprachen schreiben sich die bitweisen Operationen wie folgt:

math. Notation C/C++ Python
AND A ∧B A & B A & B
OR A ∨B A | B A | B
XOR A⊕B A ˆ B A ˆ B
NOT ¬A ˜A ˜A

Warum gibt es zwei Ausführungen dieser Operationen? Der hauptsächliche Unterschied ist,
dass die logischen Operationen short-circuit evaluation unterstützen, d.h., die Auswertung
eines logischen Ausdrucks wird so früh wie möglich beendet.

Beispielsweise wird in der Zeile “if (1 || b) ...” der Wert von b nicht ausgewertet, weil
klar ist, dass der ganze Ausdruck true ist, da das erste Argument schon true ist. Analoges
gilt für “if (0 && b) ...”: dort wird b nicht ausgewertet, da klar ist, dass der ganze
Ausdruck false sein wird. In den meisten Programmiersprachen ist klar geregelt, dass in
solchen Fällen der überflüssige Teil der Aussage garantiert nicht ausgewertet wird.

Daher kann man in C/C++ folgende Zeile ohne Gefahr einer Division durch Null schrei-
ben: “if (a != 0 && 1/a > b) ...”. Der zweite Ausdruck (“1/a > b”) wird nur dann
ausgeführt, wenn der erste wahr war, das ist im Standard der Programmiersprache so
festgelegt. Sollte der erste Ausdruck falsch sein, wird der zweite nicht mehr ausgewertet, da
die Konjunktion nicht mehr wahr werden kann: wir wissen, dass das if() nicht ausgeführt
werden kann. Damit spart man nicht nur Rechenzeit, sondern kann Programmcode auch
kompakter schreiben.

Auch hier wird wieder augenfällig, dass teilweise eine direkte Übertragung mathematischer
Sachverhalte in Programmiersprachen zu erstaunlichen Ergebnissen resp. Problemen führen
kann.

31Siehe Zahlensysteme, Abschnitt 5.1.
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6. Beweistechniken

Math answers aren’t determined by votes.

— Marilyn vos Savant32

Im folgenden Abschnitt wollen wir uns damit befassen, was es heißt, eine Aussage zu
beweisen und wie wir dabei vorgehen. Dazu gibt es verschiedene Beweistechniken.

Ein mathematischer Satz besteht immer aus zwei Teilen: Einer Behauptung (engl. state-
ment) und einem Beweis (engl. proof ), der die Gültigkeit der Behauptung zeigt. Die
Behauptung besteht meistens aus einigen Voraussetzungen und der tatsächlichen Aussa-
ge.

Beispiel: Seien a, b ∈ R︸ ︷︷ ︸
Voraussetzungen

, dann gilt: (a+ b)2 = a2 + 2ab+ b2︸ ︷︷ ︸
Aussage

.

Der Beweis dazu folgt im nächsten Abschnitt.

Es gibt verschiedene Arten von Beweisen. 33 Die wichtigsten gehen wir hier einmal durch.

6.1. Umformen von Gleichungen

Um Gleichungen der Form T1 = T2 zu lösen, wobei T1 und T2 gültige Terme sind, benutzen
wir sogenannte Äquivalenzumformungen. Dabei handelt es sich um Umformungen, die den
Wahrheitsgehalt der gesamten Gleichung erhalten. In N, Z, Q, R oder C sind dies beispiels-
weise Addition, Subtraktion, sowie Multiplikation und Division mit beliebigen Konstanten
6= 0. Beachten Sie, dass Quadrieren nur einem Zahlenbereich ohne negative Zahlen eine
Äquivalenzumformung ist (also in N, N0, Q+ oder R+)! Eine hinreichendes Kriterium für
Äquivalenzumformungen ist die Injektivität der Operation, siehe Abschnitt ??.

Beispiel 6.1.1:

7x+ 12 = 5x+ 16.

Diese Gleichung lässt sich durch die folgenden Umformungen sehr leicht lösen.

7x+ 12 = 5x+ 16 | − 5x
⇔ 7x+ 12− 5x = 5x+ 16− 5x
⇔ 2x+ 12 = 16 | − 12
⇔ 2x+ 12− 12 = 16− 12
⇔ 2x = 4 | ÷ 2
⇔ 2x/2 = 4/2
⇔ x = 2.

./

32Amerikanische Kolumnistin und Schriftstellerin, geb. 1946. Bekannt durch ihre Kolumne, speziell durch
ihren Artikel zum Ziegenproblem.

33Es gibt noch viele andere Arten von Beweisen, die wir hier aber nicht behandeln. ,
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In der Linearen Algebra lernen Sie das Gaußsche Eliminationsverfahren (engl. Gaussian
elimination) kennen. Damit können lineare Gleichungssysteme in beliebig vielen Variablen
gelöst werden.

6.2. Direkte Beweise

Bei einem direktem Beweis wird die Aussage aus bereits zuvor bewiesenen Aussagen oder
aus (per Definition) als wahr vorausgesetzten Aussagen gefolgert. Nicht weiter beweisbare
Aussagen nennen wir Axiome. 34

Ein direkter Beweis (engl. direct proof ) beginnt häufig mit dem zu Zeigenden und endet
mit einer wahren Aussage. Wie wir in Abschnitt 3.2 gesehen haben, kann man aber aus
jeder Aussage eine wahre Aussage machen. Im Falle einer Gleichung kann man z.B. einfach
beide Seiten mit 0 multiplizieren.

Um einen korrekten Beweis zu führen, muss man die ganze Zeit Äquivalenzumformungen
benutzen, denn dann kann man die Kette von Aussagen von unten lesen und von einer
als wahr bekannten Aussage zu der zu beweisenden Aussage kommen. In der Sprache der
Aussagenlogik heißt das: wir wollen Aussage A beweisen und zeigen A⇔ B ⇔ . . .⇔ w.
Prima, denn dann gilt insbesondere auch w⇒ . . .⇒ B ⇒ A und das wollten wir zeigen.

In Lehrbüchern findet sich auch oft die schönere Darstellung, in der aus einer bekannten
wahren Aussage durch Umformungen das zu Zeigende hergeleitet wird. Dieser Weg ist
natürlich auch richtig und gibt zusätzlich Punkte in der B-Note. Das entspricht dann
ebenso zu zeigen, dass w⇒ . . .⇒ B ⇒ A.

Als Beispiel nennen wir die wohlbekannten binomischen Formeln:

Seien a, b ∈ R. Dann gilt:

(a+ b)2 = a2 + 2ab+ b2,

(a− b)2 = a2 − 2ab+ b2,

(a+ b)(a− b) = a2 − b2.

Beispiel 6.2.1: Wir beweisen jetzt die erste binomische Formel mittels Termumformung.
D.h., eine der beiden Seiten der Gleichung verändert sich nicht, während auf der anderen
Seite Äquivalenzumformungen gemacht werden.

(a+ b)2 = a2 + 2ab+ b2

(a+ b)(a+ b) =
a(a+ b) + b(a+ b) =
aa+ ab+ ba+ bb =
a2 + ab+ ab+ b2 =

a2 + 2ab+ b2 = a2 + 2ab+ b2

35

34Die Axiome der wohlbekannten reellen Zahlen R werden wir in Abschnitt ?? genauer kennenlernen.
35Das Zeichen “�” oder auch “�” findet man oft, um das Ende eines Beweises zu kennzeichnen. “Q.E.D.”

(quod erat demonstrandum) findet sich heute selten.
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Beispiel 6.2.2: Als weiteres Beispiel beweisen wir jetzt die Partialsumme der geometrischen
Reihe.

Sei R 3 a 6= 1 und n ∈ N0. Dann gilt
n∑

i=0
ai = 1− an+1

1− a

Beweis:

⇔ a0 + a1 + . . .+ an = 1− an+1

1− a
⇔ (1 + a+ . . .+ an)(1− a) = 1− an+1

⇔ (1 + a+ . . .+ an)− a(1 + a+ . . .+ an) = 1− an+1

⇔ 1 + a+ . . .+ an − a− a2 − . . .− an+1 = 1− an+1

Alle Summanden außer 1 und an+1 kürzen sich raus.

⇔ 1− an+1 = 1− an+1

Alle Beweise, die wir bisher gesehen haben, sind direkte Beweise.

Aufgabe 6.2.1: Beweisen Sie durch einen direkten Beweis:

a) Das Quadrat einer geraden Zahl ist gerade.

b) Das Quadrat einer ungeraden Zahl ist ungerade.

Aufgabe 6.2.2: Beweisen Sie den Satz des Pythagoras grafisch.

Aufgabe 6.2.3: Das Kreuzprodukt zweier Vektoren a und b ist definiert durch

a× b =

a1
a2
a3

×
b1
b2
b3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


Beweisen oder widerlegen Sie:

a) Das Kreuzprodukt ist assoziativ.

b) Das Kreuzprodukt ist kommutativ.

6.3. Fallunterscheidung

Eine Technik, die oft zur Anwendung kommt, ist die (vollständige) Fallunterscheidung
(engl. proof by exhaustion):

Beispiel 6.3.1:

Behauptung: Das Produkt zweier natürlicher Zahlen a, b ist genau dann ungerade, wenn
sowohl a als auch b ungerade sind.
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Beweis: Was wir zeigen müssen, ist, dass das Produkt zweier ungeraden Zahlen ungerade
ist und dies in keinem anderen Fall so ist.

Erster Fall: a, b ∈ N sind beide gerade. Dann gibt es k, ` ∈ N mit den Eigenschaften

a = 2k, b = 2`.

Das Produkt a · b ist dann
a · b = 2k · 2` = 2(2k`).

Somit ist das Produkt gerade.

Zweiter Fall: Seien a, b ∈ N beide ungerade. Dann existieren k, ` ∈ N und es gilt

a = 2k − 1, b = 2`− 1.

Das Produkt a · b ist dann

a · b = (2k − 1) · (2`− 1) = 4k`− 2k − 2`+ 1 = 2(2k`− k − `) + 1.

Da 2k`− k − ` ∈ N, ist 2(2k`− k − `) gerade. Damit ist das Produkt ungerade.

Dritter Fall: Genau eine der beiden Zahlen a, b ist gerade, die andere ist ungerade. Ohne
Beschränkung der Allgemeinheit können wir annehmen, dass a ∈ N ungerade ist und b ∈ N
gerade. Sonst könnten wir a und b austauschen, da die Multiplikation in R kommutativ ist.

Dann gibt es k, ` ∈ N und wir können a und b schreiben als

a = 2k − 1, b = 2`.

Das Produkt a · b ist dann

a · b = (2k − 1) · (2`) = 4k`− 2` = 2(2k`− `).

Das Produkt ist also gerade.

Weitere Fälle existieren nicht. Damit ist die Aussage bewiesen.

Wir haben bei der Behandlung des dritten Falles geschrieben “ohne Beschränkung der
Allgemeinheit”, kurz “o.B.d.A.” (engl. without loss of generality). Diese Formulierung
benutzt man, wenn es ausreichend ist, nur einen von mehreren Fällen zu betrachten.
Allerdings sollte es offensichtlich sein (im Wortsinne: jedermann klar), dass das zu Zeigende
o.B.d.A. gilt oder man muss eine kurze Erklärung angeben, warum.

Beispiel 6.3.2: Für welche x ∈ R gilt:

x · x = x+ x ?

Wir rechnen es einfach aus:

x2 = 2x.

Damit wir im nächsten Schritt durch x dividieren können, müssen wir den x 6= 0 fordern.
Wir betrachen den Fall x = 0 später getrennt.

x = 2

Der Fall x = 0 löst die Gleichung aber auch, wovon wir uns durch Einsetzen überzeugen
können. Also sind die Lösungen 0 und 2.

37

https://de.wikipedia.org/wiki/Ohne_Beschr%C3%A4nkung_der_Allgemeinheit
https://de.wikipedia.org/wiki/Ohne_Beschr%C3%A4nkung_der_Allgemeinheit


6.4. Indirekte Beweise

Um einen indirekten Beweis (engl. proof by contradiction or reductio ad absurdum) zu
führen, behaupten wir das Gegenteil der zu beweisende Aussage und leiten daraus einen
Widerspruch her. Darum nennt man einen solchen Beweis auch Widerspruchsbeweis.

Beachten Sie, dass es bei einem Widerspruchsbeweis ausreicht, Implikationen zu benutzen.
Aussagenlogisch wollen zeigen, dass A gilt. Dafür nehmen wir an, dass ¬A gilt und führen
das zu einem Widerspruch: ¬A⇒ f. Nach Abschnitt 3.3 können wir den Implikationspfeil
umkehren, wenn wir beide Seiten negieren. Damit erhalten wir ¬f ⇒ ¬¬A, also w ⇒ A.
Voilà!

Beispiel 6.4.1: Wir werden die Irrationalität von
√

2 zeigen, d.h.,
√

2 /∈ Q. Dafür müssen
wir zeigen, dass es keine Zahlen a, b ∈ Z, b 6= 0 gibt, für die a/b =

√
2 gilt. Wir verwenden

das Prinzip des Widerspruchsbeweises: wir nehmen also an, dass solche Zahlen existieren
und zeigen dann, dass dies zu einem Widerspruch führt.

O.B.d.A. können wir annehmen, dass a und b teilerfremd sind, d.h., dass es kein c ∈ Z gibt,
welches sowohl a als auch b teilt. Falls ein solches c existierte, könnten wir a und b damit
kürzen und diesen Prozess fortsetzen, bis sie teilerfremd sind, ohne dass sich der Wert
des Bruches ändert. Außerdem können wir aufgrund der Positivität von

√
2 annehmen,

dass sowohl a als auch b nicht-negativ sind, sonst könnten wir durch −1 kürzen. Aus dem
gleichen Grunde ist auch klar, dass a 6= 0.

Damit können wir eine verfeinerte Behauptung treffen: es existieren keine a, b ∈ N, die
teilerfremd sind und für die a/b =

√
2 gilt.

Für den Widerspruchsbeweis nehmen wir zuerst an, dass ein solches a/b existiert und
zeigen, dass dies zu einem Widerspruch führt:

a

b
=
√

2

Hier dürfen wir quadrieren, da a, b ∈ N sind und somit Quadrieren eine Äquivalenzumfor-
mung ist.

a2

b2 = 2

a2 = 2b2.

Somit ist a2 eine gerade Zahl.

In Abschnitt 6.3 haben wir gesehen, dass das Produkt zweier natürlicher Zahlen genau
dann ungerade ist, wenn beide Zahlen ungerade sind. Die Umkehrung der Aussage gilt
ebenso (da äquivalent): das Produkt zweier natürlicher Zahlen ist genau dann gerade,
wenn mindestens eine der beiden Zahlen gerade ist. Hier heißen beide Zahlen a und da ihr
Produkt a · a = a2 gerade ist, muss auch a gerade sein.

D.h., es gibt ein k ∈ N mit a = 2k und wir können schreiben

a2 = 2b2

(2k)2 = 2b2

4k2 = 2b2

2k2 = b2.
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Also muss auch b eine gerade Zahl sein und damit wäre 2 ein gemeinsamer Teiler von a
und b. Dies steht aber im Widerspruch zu unserer Annahme.  36

Damit haben wir gezeigt, dass die Annahme
√

2 ∈ Q zu einem Widerspruch führt. Somit
muss die gegenteilige Aussage wahr sein und es folgt, dass

√
2 /∈ Q.

Aufgabe 6.4.1: Zeigen Sie durch Widerspruch: Wenn n3 durch 2 teilbar ist, dann ist auch
n durch 2 teilbar.

6.5. Ringschluss

Angenommen, man hat mehrere Aussagen A1, A2, . . . , An gegeben und will zeigen, dass
alle diese Aussagen äquivalent sind, so reicht es zu zeigen, dass:

A1 ⇒ A2

A2 ⇒ A3

An−1 ⇒ An

...
An ⇒ A1.

Dies kann sehr sinnvoll sein, da wir allein für die Äquivalenz von drei Aussagen A, B, C
sonst sechs einzelne Beweisrichtungen zeigen müssten:

A⇒ B A⇒ C B ⇒ C

B ⇒ A C ⇒ A C ⇒ B.

Mit Hilfe des Ringschlusses (auch zyklisches Beweisverfahren genannt) müssen wir nur die
minimale Anzahl an Implikationen zeigen, nämlich

A⇒ B B ⇒ C C ⇒ A.

Jeder andere Ringschluss, der alle Aussagen enthält, wäre natürlich auch legitim. Nach
Abschnitt 3.3 können die fehlenden Implikationen daraus konstruiert werden, beispielsweise
entsteht B ⇒ A aus B ⇒ C ⇒ A.

Das gilt natürlich auch für den Fall von nur zwei Aussagen A1 und A2. Möchte man zeigen,
dass A1 ⇔ A2 gilt, dann ist es oft einfacher, einzeln die Implikation in jede Richtung zu
zeigen. Und wie in Abschnitt 3.2 gezeigt, gilt

(A1 ⇔ A2) ≡ (A1 ⇒ A2 ∧A2 ⇒ A1).

Beispiel 6.5.1: Seien A, B Mengen. Dann sind folgende Aussagen äquivalent:

• A ⊆ B

• A ∩B = A

• A ∪B = B

Beweis: Wir zeigen, dass folgende Implikationen gelten:
36Einen Widerspruch in der Beweisführung zeigen wir gerne durch ein “ ” an.
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• A ⊆ B ⇒ A ∩B = A:

Da A ⊆ B gilt, ist jedes Element aus A auch in B enthalten. Der Schnitt von A und
B enthält alle Elemente, die in beiden Mengen liegen. Das ist offensichtlich die ganze
Menge A.

• A ∩B = A⇒ A ∪B = B:

Nach Voraussetzung besteht A nur aus Elementen, die auch in B enthalten sind.
Daher fügt die Vereinigung mit A der Menge B keine weiteren Elemente hinzu.

• A ∪B = B ⇒ A ⊆ B:

Da B gleich der Vereinigung von A und B ist, sind alle Elemente aus A auch in B
enthalten. Das ist die Definition von A ⊆ B.

Damit haben wir den Ringschluss vollendet und die Äquivalenz aller drei Aussagen gezeigt.

6.6. Vollständige Induktion

Vollständigen Induktion (engl. mathematical induction) ist ein sehr mächtiges Beweisver-
fahren, welches nicht so offensichtlich ist wie die bisherigen. Die Idee dahinter ist die
folgende.

Sei eine Aussage A zu zeigen für alle möglichen Werte n ∈ Z mit n ≥ n0. Wir beweisen A
quasi einzeln für jeden Wert von n. Das klingt nach sehr viel — unendlich viel! — Arbeit.
Aber wir ordnen unsere Beweise so geschickt an, dass der Beweis für den Wert n + 1
ausnutzt, dass die Aussage für den Wert n schon gezeigt worden ist. Dann müssen wir nur
noch den Beweis für den Anfangswert n0 führen und erzeugen damit eine Beweiskette für
alle n ≥ n0.

Sie können sich das vorstellen wie den Dominoeffekt: 37 wenn der erste Dominostein fällt,
fallen alle dahinter auch um.

Wir beschreiben das Verfahren jetzt formal. Wir wollen zeigen, dass eine Aussage A(n)
gilt für jeden Wert n ∈ Z mit n ≥ n0.

Es genügt, folgende Eigenschaften zu zeigen:

1. A(n0) ist wahr.

2. ∀n ≥ n0 : (A(n)⇒ A(n+ 1)).

Daraus folgt, dass A(n) wahr ist für alle n ≥ n0.

Entsprechend unterteilt sich der Beweisvorgang bei der vollständigen Induktion in drei
Schritte:

1. Zuerst zeigen wir die zu beweisende Aussage bezüglich des Startwerts n0. Dies
bezeichnen wir als Induktionsanfang (oder kurz IA) (engl. base case or basis step).

2. Wir formulieren die Induktionsvoraussetzung (kurz IV) (engl. induction hypothesis).
Das ist die Aussage A(n), deren Richtigkeit wir im Folgenden annehmen und die wir
schon für n = n0 gezeigt haben.

37Immer wieder schön: eins, zwei. ,
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3. Dann folgt der Induktionsschritt (IS) (engl. inductive step): aus der Induktionsvor-
aussetzung beweisen wir die Induktionsbehauptung: da die zu beweisende Aussage
für n bereits bewiesen ist, beweisen wir nun die Gültigkeit der Aussage für n+ 1.

Beachten Sie:

• Es ist entscheidend, dass n ∈ Z ist und nicht evtl. ∈ R. Sonst würden Sie die Aussage
A(n) eben nur für einige ganzzahlige Werte von n beweisen, aber nicht für alle n ≥ n0.

• Ebenso wichtig ist, dass Sie im Induktionsschritt nur auf Werte von n zurückgreifen,
für die die Aussagen bereits bewiesen ist. Es gibt Beweise, die benutzen die zwei
vorherigen Werte von n. In solch einem Fall müssten Sie auch für zwei Startwerte
die Aussage beweisen, d.h., A(n) ∧A(n+ 1)⇒ A(n+ 2).

Beispiel 6.6.1: Wir beweisen die Gaußsche Summenformel: 38

Behauptung: Sei n ∈ N. Dann gilt
n∑

i=1
i = n(n+ 1)

2 .

Beweis: Der Induktionsanfang ist leicht nachzurechnen. Für n = 1 gilt

1∑
i=1

i = 1 = 1(1 + 1)
2 . X

In der Induktionsvoraussetzung gehen wir davon aus, dass die Aussage für n bereits
bewiesen ist. Wir zeigen im Induktionsschritt, dass die Aussage auch für n+ 1 wahr ist.

n+1∑
i=1

i =
( n∑

i=1
i
)

+ n+ 1

= n(n+ 1)
2 + n+ 1 (nach IV)

= n2 + n

2 + 2n+ 2
2

= n2 + 3n+ 2
2

= (n+ 1)(n+ 2)
2 .

Somit haben wir gezeigt, dass A(n) ⇒ A(n + 1). Da wir A(1) gezeigt haben, gilt die
Aussage somit für alle n ∈ N.

Beispiel 6.6.2: Ein weiteres klassisches Beispiel, welches man mit vollständiger Induktion
beweisen kann, ist die Aussage, dass die Summe der ersten n ungeraden natürlichen Zahlen
gleich n2 ist.

38Carl Friedrich Gauß, deutscher Mathematiker, Astronom, Geodät und Physiker, 1777–1855 und einer der
bedeutendsten Mathematiker aller Zeiten. Er ist auf dem alten 10 Mark-Schein zu sehen, zusammen
mit Graph und Formel der Gaußschen Normalverteilung.
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Behauptung: Sei n ∈ N. Dann gilt
n∑

i=1
(2i− 1) = n2.

Beweis: Der Induktionsanfang ist wiederum leicht überprüft: Für n = 1 ist

1∑
i=1

(2i− 1) = (2 · 1− 1) = 1 = 12. X

Wir beweisen im Induktionsschritt die Aussage für n+ 1 unter der Annahme, dass sie für
n bereits bewiesen ist:

n+1∑
i=1

(2i− 1) =
n∑

i=1
(2i− 1) + 2(n+ 1)− 1.

Hier haben wir wieder den letzten Summanden aus der Summe gezogen und einzeln ans
Ende geschrieben. Jetzt verwenden wir die Induktionsvoraussetzung:

= n2 + 2(n+ 1)− 1.
= n2 + 2n+ 2− 1
= n2 + 2n+ 1.

Nun wenden wir die erste binomische Formel an und erhalten

= (n+ 1)2.

Damit ist die Aussage bewiesen.

Beispiel 6.6.3: Jetzt zeigen wir noch, dass für n ∈ N0 der Ausdruck n5−n durch 5 teilbar
ist.

Induktionsanfang: Für n = 0 steht da: 05 − 0 = 0 = 5 · 0. 0 ist durch 5 teilbar.

Induktionsschritt: Wir können annehmen, dass n5−n durch 5 teilbar ist und wollen zeigen,
dass (n+ 1)5 − (n+ 1) ebenfalls durch 5 teilbar ist.

(n+ 1)5 − (n+ 1) =
n5 + 5n4 + 10n3 + 10n2 + 5n+ 1− n− 1 =

n5 − n+ 5n4 + 10n3 + 10n2 + 5n =
n5 − n︸ ︷︷ ︸
nach IV

+ 5(n4 + 2n3 + 2n2 + n)︸ ︷︷ ︸
durch 5 teilbar

Da beide Summanden durch 5 teilbar sind, ist die Summe durch 5 teilbar.

Beispiel 6.6.4: In diesem Beispiel beweisen wir eine Ungleichung.

Zu zeigen: n2 < 2n für n ∈ N, n > 4.

Induktionsanfang bei n = 5: 25 < 32 — stimmt schon mal.
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Induktionsvoraussetzungen:

n2 < 2n,

n > 4.

Induktionsschritt n→ (n+ 1):

(n+ 1)2 < 2n+1

(n+ 1)2 < 2 · 2n

Wir verschärfen die Aussage, indem wir die IV benutzen:

(n+ 1)2 < 2 · n2

n2 + 2n+ 1 < n2 + n2

2n+ 1 < n2

1 < n2 − 2n
2 < n2 − 2n+ 1
2 < (n− 1)2
√

2 < n− 1
√

2 + 1 < n

Das gilt nach Voraussetzung.

Es existiert eine gewisse Ähnlichkeit zwischen dem Prinzip der Induktion und dem der
Rekursion. Auch bei der Rekursion wird üblicherweise ein Problem auf eine kleinere Version
seiner selbst zurückgeführt und im Endeffekt auf einen (einfachen) Basisfall.

Aufgabe 6.6.1: Zeigen Sie mittels vollständiger Induktion:

a) 13 + 23 + 33 + ...+ (n− 1)3 + n3 =
(1

2n · (n+ 1)
)2

b) 1 + 3 + 5 + ...+ (2n− 1) = n2

c)
∏n

i=2

(
1− 2

i·(i+1)

)
= 1

3 ·
(
1 + 2

n

)
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A. Lösungen zu den Aufgaben

Aufgabe 2.4.1:

a)
∑4

i=0(−1 + 5 · i)

b)
∑6

i=1
60
i

Aufgabe 3.3.1:

Mit einem NAND oder NOR: daraus kann man ein
NOT machen (NOT(a) = NAND(a, a)), daraus
dann ein AND (AND(a, b) = NOT(NAND(a, b))
und daraus dann ein OR (OR(a, b) =
NOT(AND(NOT(a),NOT(b)))). Es geht analog
mit einem NOR als elementare Operation.

Aufgabe 3.3.2:

a)

(A⇒ B) ∨ (A⇒ C) ≡
(¬A ∨B) ∨ (¬A ∨ C) ≡

¬A ∨ C ∨B ≡
¬A ∨ (C ∨B) ≡
A⇒ (B ∨ C)

b)

(A⇒ B) ∧ (A⇒ C) ≡
(¬A ∨B) ∧ (¬A ∨ C) ≡

((¬A ∨B) ∧ ¬A)︸ ︷︷ ︸
¬A

∨ ((¬A ∨B) ∧ C) ≡

¬A ∨ (¬A ∧ C)︸ ︷︷ ︸
¬A

∨ (B ∧ C) ≡

¬A ∨ (B ∧ C) ≡
A⇒ (B ∧ C)

Aufgabe 3.2.1:

a) A ∧B

b) A ∧ ¬B

c) ¬A ∧ ¬B

d) A ∨B

e) (A∨B)∧(A⇒ ¬B) oder (A∨B)∧¬(A∧B)

f) B ⇒ A

Aufgabe 3.5.1:

a) ∀x ∈ N : ∀y ∈ N : ∀z ∈ N : (x < y ⇒
x+ z < y + z)

b) ¬(∃n > 2 : ∃x ∈ N : ∃y ∈ N : ∃z ∈ N :
xn + yn = zn)

c) Sei P die Menge der Primzahlen. ∀x > 2 :
(2 | x⇒ ∃p ∈ P : ∃q ∈ P : x = p+ q)

Aufgabe 3.5.2: ∃=2a : B(a) := ∃x : ∃y : (B(x) ∧
B(y) ∧ x 6= y ∧ ∀z : (B(z) ⇒ (z = x ∨ z = y)))

Aufgabe 3.6.1:

a) Es existiert ein Student, der nicht Infor-
matik studiert und nicht doof ist.

b) Für alle geraden Zahlen gilt: Sie sind Sum-
me zweier Primzahlen.

Aufgabe 3.6.2:

a) – h) Behauptungen a), b), c), d) und f) wider-
legen die Aussage.

i) Wir negieren die Aussage “Jeder blaue
Zwerg mag Schokolade” und zeigen, dass
dies unter der Voraussetzung “Kein Zwerg
mag Schokolade”, gilt.

¬(Jeder blaue Zwerg mag Schokolade)
¬(∀z : (B(z)⇒ S(z)))
¬(∀z : (¬B(z) ∨ S(z)))
∃z : ¬(¬B(z) ∨ S(z))
∃z : (B(z) ∧ ¬S(z)︸ ︷︷ ︸

n. V. wahr

)

∃z : (B(z) ∧ wahr)
∃z : B(z)

D.h., entgegen der Intuition ist diese Aus-
sage nur wahr, falls es blaue Zwerge über-
haupt gibt.

Aufgabe 4.1.1:

a) {1, 2, 3}

b) {−1, 1}

c) Q \ {0}

d) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}

Aufgabe 4.3.1:

a) falsch

b) wahr
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c) wahr

d) wahr

e) falsch

f) falsch

g) wahr

h) falsch

i) wahr

j) falsch

Aufgabe 4.3.2:

a) “⊆”: M1 ∪ (M1 ∩M2) ⊆M1 ∪M1 = M1
“⊇”: M1 ∪ (M1 ∩M2) ⊇M1

b) M1 ∩ (M1 ∪M2)
= (M1 ∩M1) ∪ (M1 ∩M2)
= M1 ∪ (M1 ∩M2)
= M1 nach a).

Aufgabe 4.4.1:

Sei M ∈ P(A). Dann ist M ⊆ A nach Definition
der Potenzmenge. Nach Voraussetzung ist aber
A ⊆ B, also auchM ⊆ A ⊆ B, also auchM ⊆ B.
Das wiederum bedeutet, dass M ∈ P(B) laut
Definition der Potenzmenge.

Aufgabe 5.1.1:

a) 1010102

b) 11110112

c) 1100110002

d) 111001102

e) 101010012

f) 1100010001012

Aufgabe 6.2.1:

a) Sei n gerade ⇒ ∃k ∈ Z, sodass n = 2k.
(2k)2 = 4k2. Das ist offensichtlich gerade.

b) Sei n ungerade⇒ ∃k ∈ Z, sodass n = 2k−
1. (2k−1)2 = 4k2−4k+ 1 = 4(k2 − k)︸ ︷︷ ︸

gerade

+1

Aufgabe 6.2.3:

a) Falsch. Gegenbeispiel:

a =

1
0
0

 , b =

0
1
0

 , c =

1
1
1


(a× b)× c

=

0
0
1

 ×
1

1
1

 =

−1
1
0

 6=

0
1
0

 =

a× (b× c)

b) Nein. Nachrechnen für beliebige x, y ∈ R3,
x 6= 0 6= y, x 6= y.

Aufgabe 6.4.1:

Annahme: ∃k ∈ Z : (2k − 1)3 ist durch 2 teilbar.
⇒ 8k3 − 8 + 12k2 + 6k − 1 ist gerade.  

Aufgabe 6.6.1:

a) IA: n0 = 1 : 13 = 1 =
(

1·(1+1)
2

)2
X

IV:
∑n

i=1 i
3 =

(
n·(n+1)

2

)2

IS:

n+1∑
i=1

i3 =
n∑

i=1
i3 + (n+ 1)3

=
(
n · (n+ 1)

2

)2
+ (n+ 1)3

= n2 · (n+ 1)2

4 + (n+ 1)3

= n2 · (n+ 1)2 + 4(n+ 1)(n+ 1)2

4

= (n2 + 4(n+ 1)) · (n+ 1)2

4

= (n2 + 4n+ 4) · (n+ 1)2

4

= (n+ 2)2 · (n+ 1)2

4

=
(

(n+ 2) · (n+ 1)
2

)2

b) IA: n0 = 1 : 1 = 12X
IV:

∑n
i=1 2i− 1 = n2

IS:

n+1∑
i=1

2i− 1 =
n∑

i=1
2i− 1 + 2(n+ 1)− 1

= n2 + 2n+ 2− 1
= n2 + 2n+ 1
= (n+ 1)2
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c) IA: n0 = 2 : (1− 2
6 ) = 1

3X

IV:
∏n

i=2

(
1− 2

i·(i+1)

)
= 1

3 ·
(
1 + 2

n

) IS:
n+1∏
i=2

(
1− 2

i · (i+ 1)

)

=
n∏

i=2

(
1− 2

i · (i+ 1)

)
·
(

1− 2
(n+ 1)(n+ 2)

)
= 1

3 ·
(

1 + 2
n

)
·
(

1− 2
(n+ 1)(n+ 2)

)
= 1

3 ·
(

1− 2
(n+ 1)(n+ 2) + 2

n
− 4
n(n+ 1)(n+ 2)

)
= 1

3 ·
(

1− 2n
(n+ 1)(n+ 2)n+

2(n+ 1)(n+ 2)
n(n+ 1)(n+ 2) −

4
n(n+ 1)(n+ 2)

)
= 1

3 ·
(

1 + −2n+ 2(n+ 1)(n+ 2)− 4
n(n+ 1)(n+ 2)

)
= 1

3 ·
(

1− −2n+ 2n2 + 6n+ 4− 4
n(n+ 1)(n+ 2)

)
= 1

3 ·
(

1− 2n2 + 4n
n(n+ 1)(n+ 2)

)
= 1

3 ·
(

1− 2n+ 4
(n+ 1)(n+ 2)

)
= 1

3 ·
(

1− 2
n+ 1

)
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B. Symbole

¬A Negation, NOT, “Nicht”
A ∧B Konjunktion, AND, “Und”
A ∨B Disjunktion, OR, “(inklusives) Oder”
A⊕B Exklusives Oder, XOR
A⇒ B Implikation: Aus A folgt B
A⇔ B Äquivalenz: A “genau dann” oder “dann und nur dann”, wenn B
A ≡ B Äquivalenz logischer Aussagen, d.h. gleiche Wahrheitstabellen
∀x : A(x) Allquantor: für alle x gilt: A(x)
∃x : A(x) Existenzquantor: es gibt mindestens ein x, für das gilt: A(x)
∃!x : A(x) Einzigkeitsquantor: es gibt genau ein x, für das gilt: A(x)
a ∈ A a ist Element oder enthalten in der Menge A
∅ Die leere Menge {}
A ∪B Vereinigung der Mengen A und B: {x | x ∈ A ∨ x ∈ B}
A ∩B Der Schnitt der Mengen A und B: {x | x ∈ A ∧ x ∈ B}
A \B Die Differenz der Mengen A und B: {x | x ∈ A ∧ x 6∈ B}
A Das Komplement von A bezüglich einer Obermenge B: B A
A ⊆ B A ist (unechte) Teilmenge von B: ∀x : x ∈ A⇒ x ∈ B
A ⊂ B, A ( B A ist echte Teilmenge von B: A ⊆ B ∧A 6= B
N Menge der natürlichen Zahlen: {1, 2, 3, . . .}
N0 Menge der natürlichen Zahlen mit 0: {0, 1, 2, 3, . . .}
Z Ring der ganzen Zahlen: {0,±1,±2, . . .}
Q Körper der rationalen Zahlen: {a/b | a ∈ Z, b ∈ N}
R Körper der reellen Zahlen
R>0 {x ∈ R | x > 0}
C Körper der komplexen Zahlen: {a+ bi | a, b ∈ R} mit i2 = −1
[a, b] Abgeschlossenes Intervall: {x ∈ R | a ≤ x ≤ b}, mit a, b ∈ R
(a, b) Offenes Intervall: {x ∈ R | a < x < b}, mit a, b ∈ R
bac Abrundungsfunktion: max{x ∈ Z | x ≤ a}, mit a ∈ R
dae Aufrundungsfunktion: min{x ∈ Z | x ≥ a}, mit a ∈ R
preim(R) Urbildbereich der Relation R: {x | ∃y : (x, y) ∈ R}
im(R) Bildbereich der Relation R: {y | ∃x : (x, y) ∈ R}
dom(R) Vorbereich der Relation R
codom(R) Nachbereich der Relation R
f : A→ B Funktion f mit Definitionsbereich A und Zeilbereich B
x 7→ f(x) x wird abgebildet auf f(x)
a ◦ b Komposition von Funktionen oder allgemeine Verknüpfung
a−1 Multiplikatives Inverses zu a
R[x] Polynomring in x über R, d.h. die Menge der Funktionen, die

darstellbar sind als
∑

i∈N0
aix

i mit ai ∈ R
a mod d Modulo: Rest r der Division a/d mit

a, n, d, r ∈ Z, d 6= 0: a = n · d+ r, 0 ≤ r < |d|
a | b a ∈ Z \ {0} teilt b ∈ Z, also a mod b = 0
a - b a ∈ Z \ {0} teilt b ∈ Z nicht, also a mod b 6= 0
logb(x) Logarithmus von x zur Basis b
e Eulersche Zahl e =

∑∞
i=0 1/i! = 2.718281828459 . . .

ln x Natürlicher Logarithmus von x zur Basis e: loge x
O(f(n)) Asymptotischer Aufwand:

{t : N→ R≥0 | ∃c ∈ R>0, n0 ∈ N : ∀n ≥ n0 : t(n) ≤ c · f(n)}
Quod erat demonstrandum: Ende eines Beweises

./ Ende eines Beispiels
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C. Griechisches Alphabet

Alpha α A
Beta β B
Gamma γ Γ
Delta δ ∆
Epsilon ε, ε E
Zeta ζ Z
Eta η H
Theta θ, ϑ Θ
Iota ι I
Kappa κ, κ K
Lambda λ Λ
My µ M
Ny ν N
Xi ξ Ξ
Omikron o O
Pi π Π
Rho ρ, % P
Sigma σ Σ
Tau τ T
Ypsilon υ Υ
Phi φ, ϕ Φ
Chi χ X
Psi ψ Ψ
Omega ω Ω

Es hilft beim Lesen und Verstehen von wissenschaftlichen Texten, die griechischen Buch-
staben aussprechen und schreiben zu können.
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D. Rechenregeln

Brüche
a

b
· c
d

= a · c
b · d

a

b
: c
d

= a

b
· d
c

= ad

cb

Binome

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

(a+ b) · (a− b) = a2 − b2(
n

k

)
= n!

(n− k)! · k!(
n

0

)
=
(
n

n

)
= 1(

n

1

)
=
(

n

n− 1

)
= n(

n

k

)
=
(

n

n− k

)

Exp, Log

e = 2.718281828459 . . .

ex = exp(x) =
∞∑

n=0

xn

n!

ab = exp(b · log(a))
logb(1) = 0
logn(n) = 1
logb(x · y) = logb(x) + logb(y)

logb

(x
y

)
= logb(x)− logb(y)

logb(x+ y) = logb(x) + logb(1 + y

x
)

logb(xr) = r · logb(x)

logb

( 1
x

)
= − logb(x)

logb( n
√
x) = logb(x1/n) = 1

n
logb(x)

logb(x) = loga(x)
loga(b)

alogn (b) = blogn (a)

logb(ba) = a = blogb(a)
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E. Potenz- und Wurzelgesetze

Der folgende Text stammt aus Wikipedia:

Um die nachfolgende Tabelle nicht zu überladen, betrachten wir nur Potenzen mit reellen
Basen, die ungleich 0 sind. Betrachtet man aber eines der unten aufgeführten Gesetze mit
nur positiven Exponenten, dann ist es auch für Potenzen zur Basis 0 gültig. Wenn von
rationalen Zahlen mit geraden oder ungeraden Nennern gesprochen wird, dann sind stets
die Nenner ihrer gekürzten Bruchdarstellungen gemeint.

a0 = 1 für a 6= 0
a−r = 1

ar für r ∈ R, falls a > 0 ist;
für r ∈ Q mit ungeradem Nenner, falls a < 0 ist.

a
m
n = n

√
am =

( n
√
a)m

für n ∈ N und m ∈ Z, falls a > 0 ist;
für m ∈ Z und ungerade n ∈ N, falls a < 0 ist.

ar+s = ar · as

ar−s = ar

as

für r, s ∈ R, falls a > 0 ist;
für r, s ∈ Q mit ungeraden Nennern, falls a < 0 ist.

(a · b)r = ar · br für r ∈ N, und für r ∈ Z, wenn a · b 6= 0;
für r ∈ R, falls a, b > 0 sind;
für r ∈ Q mit ungeraden Nennern, falls mindestens eine der Zahlen
a, b negativ ist.

(a
b )r = ar

br für r ∈ Z mit r ≥ 0 und b 6= 0 oder r ≤ 0 und a 6= 0;
für r ∈ R, falls a, b > 0 sind;
für r ∈ Q mit ungeraden Nennern, falls mindestens eine der Zahlen
a, b negativ ist.

(ar)s = ar·s für r, s ∈ Z, falls a 6= 0 ist;
für r, s ∈ R, falls a > 0 ist;
für r, s ∈ Q mit ungeraden Nennern, falls a < 0 ist.

(ar)s = −ar·s für a < 0 und r, s ∈ Q, falls r und r · s ungerade Nenner haben
und r · s einen ungeraden Zähler hat.

Ist mindestens einer der Exponenten r, s irrational oder sind beide rational, aber hat
mindestens eine der Zahlen r oder r · s einen geraden Nenner, dann ist einer der Ausdrücke
(ar)s oder ar·s für a < 0 undefiniert. Ansonsten sind beide definiert und stimmen entweder
überein oder unterscheiden sich nur um ihr Vorzeichen. Für beliebige r, s, falls a > 0
ist, und für ganze r, s, falls a 6= 0 ist, stimmen sie immer überein. Für a < 0 und nicht
ganzzahlige, aber rationale r, s sind diese beiden Fälle möglich. Welcher Fall eintritt, hängt
von der Anzahl der Zweien in der Primzahlzerlegung des Zählers von r und des Nenners
von s ab. Um das richtige Vorzeichen auf der rechten Seite der Formel (ar)s = ±ar·s zu
erkennen, ist es hinreichend, in diese Formel a = −1 einzusetzen. Das Vorzeichen, mit
dem sie dann bei a = −1 gültig ist, bleibt richtig für alle a < 0 und gegebenem r, s. Gilt
(ar)s = −ar·s für a < 0, dann gilt (ar)s = |a|r·s für alle a 6= 0 (und auch für a = 0, falls
alle Exponenten positiv sind).

Zum Beispiel gilt ((−1)2)
1
2 = 1 und (−1)2· 12 = −1. Darum ist

√
a2 = (a2)

1
2 = −a2· 12 = −a

für alle a < 0 und somit
√
a2 = |a| für alle reellen a gültig.
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F. Programmieraufgaben

Falls Sie auf der Suche nach Übungsaufgaben zum Programmieren sind, dann finden Sie
hier einige Anregungen. Die Liste ist grob sortiert nach steigendem Schwierigkeitsgrad.

• Umrechnung EUR in USD und zurück

• Body-Mass-Index ausrechnen und Bewertung ausgeben

• Primfaktorzerlegung einer ganzen Zahl

• Primzahlen finden mit dem Sieb des des Eratosthenes

• Verifizierung eines Datums (Schaltjahre, etc.)

• Pseudo-Zufallszahlen generieren mit der LCM Methode

• ggT berechnen mit dem (erweiterten) Euklidischen Algorithmus

• Binäre Suche in einer schon sortieren Liste

• Zahl in römischen Ziffern ausdrücken und zurück

• Sortierter binärer Baum (für beliebige Datentypen)

• Datum umrechnen in Sekunden seit 1.1.1970 und zurück (mit Schaltjahren!)

• Prüfziffernberchnung oder Überprüfung einer IBAN

• Eigene Berechnung der Quadratwurzel durch Intervallschachtelung

• Sortierfunktion schreiben wie Bubble Sort oder Merge Sort

• Gedichte generieren (das können Sie beliebig aufwändig machen)

• Deterministischen endlichen Automaten implementieren

• Taschenrechner mit Punkt-vor-Strichrechnung, der “10+2*5.5” rechnen kann

• Klasse zur komplexen Arithmetik (+, −, ·, :)

• Addition und Multiplikation von langen Zahlen

• Tic-Tac-Toe Spiel mit optimaler Strategie

• Karatsuba-Multiplikation von langen Zahlen

• Klasse zur Matrix-Arithmetik (+, −, ·, Inverses)

Viele weitere Ideen finden Sie auch hier. Wenn Sie es gerne mathematisch haben, dann
gibt es bei Projekt Euler massenhaft Aufgaben. Die Hochschule Karlsruhe hat auch eine
schöne Liste mit Aufgaben samt Tipps und Lösungen.
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G. Versionsgeschichte

Diese Übersicht beschreibt die Veränderungen zwischen den einzelnen Versionen dieses
Skripts. Rein sprachliche oder kosmetische Änderungen sind nicht extra aufgeführt.

• v7.0
Intiale Version mit den Inhalten der ersten Woche
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