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1. Intro

Mathematicians claim that math is not a spectator sport:
you cannot understand math, or enjoy it, without doing it.

— Barbara Burke Hubbard, The World According to Wavelets

1.1. Danksagung

Fiir die groflartige Arbeit in den letzten 6 Jahren, die uns erlaubt, bei diesem Vorkurs auf
umfangreiches Material und Erfahrung zuriickzugreifen, obwohl wir ihn zum ersten Mal
halten, danken wir besonders besonders herzlich Christoph Liiders.

Auch mochte ich mich jetzt schon herzlich bei allen diesjahrigen Tutoren bedanken: Lena
Berster, Jonas Cremer, Bettina Esser, Julius Gummersbach, Matthias Neidhardt, Johanna
Ockenfels, Benedikt Stratmann und Vincent Wieland.

Teile dieses Vorkurses orientieren sich an dem Skript zur Vorlesung “Logik und diskrete
Strukturen” von Heiko Réglin [R617]. Ebenso folgen einige Abschnitte Teilen aus “Einfiih-
rung in die Informatik” von Wolfgang Kiichlin und Andreas Weber [KWO05]. Herzlichen
Dank fir die Inspiration und Vorlage.

Der Vorkurs basiert in Teilen auf einem Skript und Ubungszetteln von Leif Thiemann und
Christopher Voss. Sarah Sturm hat die Ubungen weiter ergéinzt und durchgesehen. Auch
an diese meinen herzlichen Dank.

Ebenso herzlichen Dank an alle Fehlersucher und -finder! *

Bonn, im September 2020
B. S. und D. K.

1.2. Organisatorisches

Der Vorkurs findet statt von Montag, dem 28.09., bis Freitag, dem 09.10., jeweils von
10h—12h.

Aufgrund der Covid-19-Sicherheitsmafinahmen findet der Vorkurs erstmals komplett online
statt. In der ersten Woche (vom 28.09. bis 02.10.) wird die Vorlesung von Barbara Schwarz-
wald gehalten und Sie kdnnen unter diesem Zoom-Konferenz-Zugangslink teilnehmen. In
der zweiten Woche (vom 05.10. bis 09.10.) wird die Vorlesung von David Kiibel gehalten.

Die angegeben Startzeiten sind wie in der Universitat iiblich “c.t.”, cum tempore, d.h. eine
Viertelstunde nach der vollen Stunde. Das Gegenteil ist “s.t.”, sine tempore, also piinktlich
zur vollen Stunde.

Die Ubungen sind unterteilt in 8 Gruppen und finden von 13h-15h statt. Manche der
Gruppen werden iiber Zoom, andere iiber die Plattform BigBlueButton gehalten. Zur
Teilnahme treten Sie ab dem 28.09. einer der Ubungsgruppen im precampus-Kurs bei.
Dort finden Sie dann die entsprechenden Zugangsdaten.

!Sie haben trotzdem noch einen Fehler gefunden? Am Besten sagen Sie uns direkt in oder nach der
Vorlesung Bescheid. Aber auch Email wird gelesen. Vielen Dank!


https://uni-bonn.zoom.us/j/93204069523?pwd=akJ6MzJjMzY5L2ltWW1Kc1FCazEyQT09

Dieses Skript ist unter der Lizenz “Creative Commons Attribution-ShareAlike” (CC BY-SA
4.0) verfiigbar. Damit darf das Material aus diesem Skript geteilt und bearbeitet werden,
solange gewisse Bedingungen erfiillt sind. Fiir die genauen Regeln siehe die Lizenz.

Wiéhrend des Vorkurses wird es wahrscheinlich neue Versionen dieses Skripts geben, die
Fehler korrigieren oder etwas erweitert sind. Die neueste Version ist immer im precampus-
System der Uni Bonn erhéltlich.

1.3. Raison d’étre

Der Vorkurs Formale Methoden der Informatik wendet sich an (kommende) Erstsemester
des Bachelorstudiengangs Informatik. Der Vorkurs dient mehreren Zwecken:

e Schaffung eines einheitlichen Niveaus & Wiederholung von “Vokabeln”
o Ubung des mathematischen Formalismus

« Stimulation zu Gruppenarbeit, Ubung von “social skills”

o Ausblick auf einige interessante Themen der Informatik

Wir versuchen den Spagat zwischen dem Auffrischen von bereits aus der Schule bekanntem
Stoff und der Présentation von neuem, der Informatik eigenem Stoff. Wir trainieren formale
Genauigkeit einerseits und geben den groBen Uberblick iiber die Breite des Anfingerstudi-
ums andererseits.

Aufgrund dieser widerstrebenden Interessen und der Kiirze der Zeit werden wir das nur zu
einem gewissen Grade schaffen. Bitte bleiben Sie trotzdem dabei! Der Sinn des Vorkurses
ist, Sie mit den Themen der Informatik zum ersten Mal in Berithrung zu bringen. Alles,
was wir hier besprechen, kommt im Laufe Thres Studiums erneut dran und wird genauer
eingefiihrt und ausgiebiger bearbeitet. Wenn Sie dann beim zweiten Durchgang des Themas
denken, “wo war denn da das Problem?”, hat der Vorkurs seinen Sinn erfillt.

Lassen Sie sich aber bitte auch nicht abschrecken, falls gewisse Themen des Vorkurses
Ihnen zu einfach erscheinen. Nicht alle Erstsemester haben den gleichen Hintergrund und
damit das gleiche Wissen. Die Informatik vereint viele verschiedene Aspekte auch anderer
Wissenschaften und wir hoffen, dass fiir Jede und Jeden in diesem Vorkurs genug Neues
und Interessantes zu finden ist. Weiterhin kann es am néchsten Tag bei einem neuen
Thema ganz anders aussehen.

Selbst, wenn Thnen dieser Vorkurs leicht féllt, lassen Sie sich nicht tduschen: das Niveau
und die Intensitdt des Lernens an der Universitat sind nicht mit denen der Schule zu
vergleichen. Daher héren Sie lieber den gleichen Stoff doppelt, als ihn zu verpassen und
moglicherweise ein Modul wiederholen zu miissen.

1.4. Selbsthilfe

Wie Jiirgen Fohrmann, Rektor unserer Universitdt von 2009-2015, bei der Absolventenfeier
2014 sagte, ist das Ziel jedes Studiums “Bildung in einem bestimmten Fachbereich”. Dazu
ist meist das Erlernen von Wissen erforderlich, welches spater in Priifungen abgefragt wird.
Wie Sie dieses Wissen erwerben, ist dabei eher unwesentlich und zudem von Person zu
Person sehr unterschiedlich. Nutzen Sie alle Méglichkeiten, die sich Thnen bieten, nicht
nur die Vorlesungen, Ubungen und Literatur. Finden Sie heraus, wie Sie am besten lernen
kénnen.


https://creativecommons.org/licenses/by-sa/4.0/deed.de
https://www.uni-bonn.de/studium/vor-dem-studium/orientierung-beratung/vorkurse/vorkursanmeldung-mit-precampus
https://www.uni-bonn.de/studium/vor-dem-studium/orientierung-beratung/vorkurse/vorkursanmeldung-mit-precampus
https://www.uni-bonn.de/studium/vor-dem-studium/orientierung-beratung/vorkurse/mnf/vorkurs-formale-methoden-der-informatik

Einige sinnvolle Hilfsmittel kénnten fiir Sie sein:

Dieses Skript: schauen Sie zumindest mal driiber, bevor Sie zur dieser Vorlesung
gehen. Und wenn die Vorlesung dann lauft, kénnen Sie auch auf einen der vielen
Links klicken (alle blauen Texte sind externe Links), wenn Sie mehr zu einem Thema
wissen wollen. Oft verlinkt es auf Wikipedia, siche den néchsten Punkt.

Das Skript enthélt auch einige Aufgaben, deren Lésungen dann in Anhang A zu
finden sind.

Wikipedia: Muss man dazu noch mehr sagen? Lesen Sie aber auch mal die englische
Wikipedia. Die Inhalte und Qualitdt sind nicht immer wie in der deutschen, oft kann
man einiges mehr oder anders lernen.

Es gibt sehr gute Foren im Netz. Zum Beispiel hat Stack Overflow fir Fragen rund ums
Programmieren oder Mathematics Stack Exchange fiir Fragen zur Mathematik eine
hohe Qualitdt. Ansonsten ist natiirlich Google immer wieder die erste Anlaufstelle.

Nutzen Sie natiirlich auch die Bibliotheken der Universitdt. Biicher zum Thema
Informatik stehen in der “Abteilungsbibliothek fiir Medizin, Naturwissenschaften und
Landbau”, Nuflallee 15a, 53115 Bonn. Die Offnungszeiten sind sehr leger: Montag—
Sonntag, 8:00-24:00 Uhr. Es gibt in den Bibliotheken grofie Leseséle, in denen man in
Ruhe lesen und arbeiten kann. Die Lehrbuchsammlung hélt von den Standardwerken
viele Exemplare zum Ausleihen bereit. Die ULB hat auch eine Facebook-Seite und
einen Twitter-Account!

In der Romerstrale und im LBH, Raum E.15 stehen den Studierenden in den
Fachschaftsraumen Handapparate mit wichtiger Grundlagenliteratur zur Verfiigung,
siehe auch hier. Die Biicher der Handapparate kénnen nur vor Ort eingesehen werden.

Sie wollen vorher wissen, ob und wo ein Buch verfiigbar ist (es gibt ja noch andere
Bibliotheken der Uni)? Nutzen Sie bonnus, das Suchportal der Uni online.

Videos im Netz, z.B. von Christian Spannagel von der PH Heidelberg (auf seinem
Youtube Channel).

Weiterhin hervorragend ist 3BluelBrown mit seinem Youtube-Kanal. Ansehen!
Es gibt zu vielen Themen gute Videos, suchen Sie mal danach.

Vielleicht wollen Sie Thre Aufzeichnungen direkt schén im Computer setzen? Dann
nutzen Sie das TEX/KTEX System. Es erzeugt ausgesprochen schéne Dokumente,
ist kostenlos und friither oder spédter miissen Sie es sowieso lernen. Dieses Skript ist
mit MiKTeX fiir Windows erstellt worden. Andere Betriebssysteme werden auch

unterstiitzt, suchen Sie einfach im Netz nach “latex mybrandofoperatingsystem”.’

Wolfram Alpha: kann gut rechnen, auch symbolisch.

Als kostenlose Alternative zu teuren Computer Algebra Systemen wie Maple oder
Mathematica bietet sich SageMath an, auch online als SageMathCell. SageMath
programmiert sich in Python, das konnte sich als hilfreich erweisen.

Kennen Sie den Google Graph Plotter? Geben Sie mal bei Google “sin(e”x)” ein!

2I/TRX kann einen in den Wahnsinn treiben. Aber das kann Word auch, habe ich mir sagen lassen. Sollten
Sie IMTEX benutzen, werden Sie tex.sx lieben lernen. Eine gute Einfithrung findet sich in The Not So
Short Introduction to BTEX 2. und Wikibooks LaTeX hat viele einfache Beispiele.


https://xkcd.com/816/
https://de.wikipedia.org/
https://en.wikipedia.org/
https://stackoverflow.com/
https://math.stackexchange.com/
https://www.ulb.uni-bonn.de/die-ulb/oeffnungszeiten-zweigstellen/abteilungsbibliothek-mnl
https://www.ulb.uni-bonn.de/die-ulb/oeffnungszeiten-zweigstellen/abteilungsbibliothek-mnl
https://www.facebook.com/ulbbonn/
https://twitter.com/ulbbonn
https://www.informatik.uni-bonn.de/de/institut/bibliothek
https://bonnus.ulb.uni-bonn.de/
https://www.youtube.com/channel/UC_FGVqET9-GHgKZ7G0ejTSA
https://www.youtube.com/c/3blue1brown
https://de.wikipedia.org/wiki/LaTeX
https://miktex.org/
http://www.wolframalpha.com/
https://sagecell.sagemath.org/
https://tex.stackexchange.com/
http://tug.ctan.org/info/lshort/english/lshort.pdf
http://tug.ctan.org/info/lshort/english/lshort.pdf
https://en.wikibooks.org/wiki/LaTeX

 Sie wollen das Programmieren in C/C++ oder Python beginnen? MinGW fiir Windows
ist ein GNU C/C++, ADA und FORTRAN (!) Compiler, der ebenso in Cygwin
verfiighar ist. Wer Linux hat, hat gcc wahrscheinlich schon auf dem Rechner. Unter
Windows ist Microsoft Visual Studio Express fiir C/C++, C#, Visual Basic, Python
und F# kostenlos und sehr leistungsfahig. Nicht zuletzt kann man Python fiir alle
Betriebssysteme vollig frei laden und benutzen. Prima Sprache!

In Anhang F finden Sie eine Liste von Problemen und weitere Links, falls Sie sich
iiben wollen.

e Sie programmieren gerne oder arbeiten lange Zeit an den gleichen Dateien, die Sie
immer weiter verdndern (wie z.B. ein XTEX-Dokument)? Verwalten Sie Ihre Dateien
mit einem Sourcecode Management System wie Subversion, Mercurial oder Git. Sie
kénnen damit jederzeit sehen, wann Sie welche Anderung gemacht haben, kénnen
gleichzeitig mit vielen Anderen an Ihren Dateien arbeiten und haben obendrein ein
Backup mit unendlich vielen Generationen.

e Und wenn Sie jetzt schon so eifrig programmieren, dann vergessen Sie nicht, Test
Code zu schreiben. Am besten schon von Anfang an.

« Fragen zum Uni-Betrieb, Arger mit dem Dozenten, Probleme mit dem Stoff? Die
Fachschaft Informatik weifl Rat.

o Ein vorletzter Tipp: Gehen Sie zum Uni-Sport! Es gibt dort fast alles (von Aikido
bis Zumba), es kostet nichts oder fast nichts, es macht Spafl und Sie sitzen sowieso
genug am Schreibtisch.

e Last but not least: schlafen Sie genug. “Was fiir ein lamer Tipp”, werden Sie denken,
aber es lohnt sich, auch akademisch! Ausgeschlafen kénnen Sie sich Dinge besser
merken, sind emotional ausgeglichener und kommen nachweislich zu besseren Noten,
siehe auch “College students: getting enough sleep is vital to academic success”. Wer
gerne mehr dazu wissen will, dem sei das Buch “Why we sleep” von Matthew Walker
[Wall7] empfohlen. It’s a good and easy read.

1.5. Literatur

Teile dieses Vorkurses orientieren sich an der Vorlesung “Logik und diskrete Strukturen”
von Heiko Roglin aus dem WS 2012/13 [R617].

Aussagenlogik, die Definition von Termen und O-Notation finden sich auch in “Einfiihrung
in die Informatik” von Kiichlin und Weber, [KWO05].

Eine schone Ubersicht {iber mathematische Sprache und Symbolik findet sich in dem PDF
“Einfiihrung in Sprache und Grundbegriffe der Mathematik” von Markus Junker von der
Universitét Freiburg [Junl0].

Eine etwas tiefere Einfiihrung in die Mathematik mit vielen Aufgaben und Loésungen halt
der “Vorkurs Mathematik” von Georg Hoever bereit [Hoel4].

Immer wieder gute Dienste leistet die “kleine Enzyklopéddie Mathematik” [KEMS80], wird
aber leider nicht mehr aufgelegt. Sie lédsst sich jedoch noch gebraucht kaufen.

Schon zu lesen und mit vielen interessanten Beispielen ist auch “Mathematics for Computer
Science” von Eric Lehman und Tom Leighton [LLO04], per Download im Internet zu finden.


http://www.mingw.org/
https://www.cygwin.com/
https://visualstudio.microsoft.com/vs/express/
https://www.python.org/download
https://en.wikipedia.org/wiki/Revision_control
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://git-scm.com/
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://www.fachschaft.info/
https://www.sport.uni-bonn.de/sportangebot
https://aasm.org/college-students-getting-enough-sleep-is-vital-to-academic-success/

2. Mathematische Sprache

Stimmen die Namen und Begriffe nicht, so ist die Sprache konfus.
Ist die Sprache konfus, so entstehen Unordnung und MiBerfolg.

[...] Darum muB der Edle die Begriffe und Namen korrekt benutzen
und auch richtig danach handeln kénnen.

— Konfuzius, Gesprache, Buch XIlI, 3.

Der Sinn mathematischer Symbolik ist, einen Sachverhalt exakt auszudriicken. Wir
bedienen uns dazu spezieller mathematischer Symbole und einer speziellen mathematischen
Sprache.

Die Aussage “etwas ist kleiner zehn” mag auf den ersten Blick klar erscheinen, es stellen
sich aber bei genauerer Betrachtung mehrere Fragen:

e Meinen wir nur ganze Zahlen oder Briiche oder noch was anderes?

e Sind negative Zahlen auch gemeint?

e Genau 10 oder nur so ungefihr? Echt kleiner oder kann es auch gleich sein?
o Ist vielleicht eine Lange gemeint? Wenn ja, in welcher Richtung gemessen?

Um solche Unklarheiten zu vermeiden, verwenden wir eine genaue Schreibweise von klar
definierten Symbolen. Leider ist selbst in der Mathematik “klar definiert” nicht immer ganz
klar. So gibt es zum Beispiel verschiedene Auslegungen zu dem Begriff der “natiirlichen
Zahl”. Solche Unklarheiten werden dann z.B. durch ein Symbolverzeichnis (sieche Anhang B)
eines Buches geklart.

Trotzdem ist mathematische Sprache wesentlich genauer als natiirliche Sprache. Wichtig
fiir Sie zu lernen ist zweierlei:

1. Wie driicke ich mich klar in dieser Sprache aus? Unser Beispiel schreiben wir klarer
so: “Sei x € R mit x < 10”7

2. Es bleibt trotz alledem Sprache, also ein Mittel der Kommunikation. Es sollte kein
blinder Formalismus werden. Wenden Sie sich an den Leser, um Ihre Gedanken
moglichst einfach und klar darzustellen.

Zu uben, sich zwischen diesen beiden Punkten zu bewegen, ist unter anderem Ziel dieses
Vorkurses.

Mathematische Sprache ist typischerweise nicht sehr schén (im Sinne von “eloquent”).
Schlimmer noch, sie ist oft sehr repetitiv, langweilig und variantenarm. Das ist leider der
Sinn der Sache, da es fiir uns sehr sinnvoll ist, immer die gleichen Worter zu nutzen, die
wir vorher hoffentlich einmal definiert haben. Nur so kénnen wir uns exakt ausdriicken.

In diesem Skript stehen die englischen Fachbegriffe immer in Klammern hinter den deut-
schen, da Sie héufig auch englische Texte lesen werden und wer kommt schon auf die Idee,
dass ein Kérper im Englischen field heifft? Uberhaupt sollten Sie sich um ein gutes Englisch
bemiihen in der Reihenfolge: Lesen, Schreiben, Horen, Sprechen, da wenige Aufgaben fiir
Informatiker vorstellbar sind, in denen das nicht wichtig sein wird. Zu diesem Thema gibt
es auch Kurse der Uni.

Anhang C enthélt eine Tafel der griechischen Buchstaben, die oft in mathematischen Texten
vorkommen (man hat sonst einfach zu wenige Buchstaben). Sie erleichtern sich das Lesen,


https://de.wikipedia.org/wiki/Konfuzius
https://www.ikm.uni-bonn.de/sprachlernzentrum

Sprechen und sogar das Verstdndnis der Texte, wenn Sie die Buchstaben benennen und
aussprechen kénnen.

Es gibt viele normale Worte, die in der Mathematik eine genau definierte Bedeutung haben.
Im Laufe des Vorkurses werden wir davon einige kennenlernen, wie z.B. “geordnetes Paar”,
“genau dann, wenn”, “beliebig, aber fest”, “fast alle”, “trivial” oder “ohne Beschrinkung
der Allgemeinheit”.

Im Folgenden fiihren wir einige Vokabeln und Schreibweisen ein, die dann spéter mit
weiterem Inhalt gefiillt werden. Im Moment geht es uns nur um die mathematische
Sprache.

2.1. Term, Gleichung, Ungleichung

Als Term bezeichnen wir wohlgeformte mathematische Ausdriicke, die aus Zahlen, Unbe-
stimmten, Klammern und Operatoren (+, —, -, :) bestehen. Sie bilden die giiltigen Worte
der mathematischen Sprache. D.h., ein Term enthélt kein Gleichheits- oder Ungleichheits-
zeichen.

Zwei Terme, welche durch die Vergleichsoperation “=" verbunden sind, nennen wir Glei-
chung (engl. equation).

Beispiel 2.1.1 (Pythagoras): Seien a, b, ¢ € R die Seitenldngen einen rechtwinkligen
Dreiecks, wobei die Seite der Lénge ¢ gegeniiber des rechten Winkels liegt. Dann gilt die
Gleichung

a2+ b2 =2

Sowohl “a? + b?” als auch “c?” sind Terme, aber auch nur “a?” ist ein Term. Kein Term

dagegen ist “a® 4+ (nicht wohlgeformt, da das rechte Argument fiir “+” fehlt). X3

Terme, welche einen Vergleichsoperator wie “<”, “<” “>” “>” oder “#£” beinhalten,
nennen wir Ungleichungen (engl. inequality).

2.2. Rechengesetze

Vorab seien einige Rechengesetze wiederholt, die Sie aus R kennen. In Kapitel 7?7 werden
wir algebraische Strukturen kennenlernen, fiir die manche dieser Gesetze nicht gelten.

Seien a, b, ¢ € R. Dann gelten folgende Rechenregeln:

(a+b)+c=a+(b+0), (Assoziativitat der Addition)
(a-b)-c=a-(b-c), (Assoziativitat der Multiplikation)
a+b=>b+a, (Kommutativitat der Addition)

a-b=>-a, (Kommutativitat der Multiplikation)
(a+b)-c=a-c+b-c. (Distributivitét)

Diese Regeln folgen (wie wir in Abschnitt 7?7 sehen werden) aus der Tatsache, dass R ein
Korper ist.

Achten Sie auf diese “Vokabeln”. Diese Worte kommen immer wieder vor.

3Dieses Zeichen benutzen wir, um das Ende eines Beispiels zu markieren.


https://de.wikipedia.org/wiki/Assoziativgesetz
https://de.wikipedia.org/wiki/Kommutativgesetz
https://de.wikipedia.org/wiki/Distributivgesetz

2.3. Konventionen

[

Es gilt als Konvention, dass das Rechenzeichen “-”, welches meist fiir die Multiplikation

steht, nicht geschrieben werden muss.

D.h., folgende Terme sind gleich:

2-a = 2a,

a-b-c=abc.

Im Zusammenspiel mit dem Zeichen “+7, welches meist fiir die Addition steht, gilt Punkt-
vor-Strichrechnung. D.h., ohne Angabe von Klammern bindet das Zeichen “-” stérker als
das Zeichen “+7:

2-a+b=(2-a)+b,
a+b-c=a+(b-c).

Das kennen Sie alle aus der Schule. Wichtig zu wissen ist hier, dass das Ganze eine
syntaktische Konvention ist, d.h., es gilt auch, falls die beiden Zeichen fiir etwas Anderes
stehen als Multiplikation und Addition. Das wird uns in Kapitel 7?7 beschéftigen.

2.4. Summen- und Produktschreibweise

Zur Addition von mehreren Summanden, die man abhéngig von einer Index- oder Lauf-
variable beschreiben kann, benutzt man gerne das Summenzeichen Y. Die Laufvariable
nimmt alle ganzzahligen Werte von ihrem Startwert bis zum Endwert an, inklusive dieser
beiden.

Beispiel 2.4.1:

10

1424+344+5+46+7+8+9+10=> i,
=1

11 1 1 &

X

Beachten Sie, dass der Name der Indexvariable (hier ¢) keinen Einfluss auf das Summe hat.
Es handelt sich um eine gebundene Variable. *

Wenn der Anfangswert der Indexvariablen gréfler ist als sein Endwert, dann ist die Summe
leer und ihr Wert ist 0:

n

> i=0.

i=n+1

“Fiir die Programmierer unter Thnen: in C/C++ kénnte man eine Summe so schreiben:

sum = 0;
for (int i = start; i <= end; ++i)
sum += term(i);

Beachten Sie, dass i ein Integer ist und jeweils um 1 erhoht wird und dass die obere Grenze in der
Schleife auch durchlaufen wird (i <= end).


https://de.wikipedia.org/wiki/Summe#Notation_mit_dem_Summenzeichen
https://de.wikipedia.org/wiki/Leere_Summe
https://de.wikipedia.org/wiki/Leere_Summe

Manchmal ist der Gebrauch von Klammern ratsam, da sonst nicht klar ist, was alles
summiert wird. Was meint wohl -7 ;i —1? Wollte der Autor >-1 (i —1) oder (3 i i)—1
sagen?

Ebenso gibt es das Produktzeichen [ zur Darstellung von Produkten aus mehreren Fakto-
ren.

Beispiel 2.4.2:
6

6l=1-2-3-4.5-6=]]i
=1

X

Beachten Sie die Punkt-vor-Strichrechnung! Da das [[-Zeichen eine Abfolge von Fakto-
ren darstellt, miissen Sie klammern, falls die Faktoren Additionen oder Subtraktionen
enthalten.

Beispiel 2.4.3:

3

3
(a1 — 1)(&2 — 2)(&3 — 3) = H(az — Z) 75 Hai —1
i=1

=1

Auch hier gibt es ein leeres Produkt, welches den Wert 1 hat:

Summen- und Produktzeichen werden uns wieder begegnen in Abschnitt ??. Ahnliche
Schreibweisen fiir andere Operationen lernen wir schon in Kapitel 3 kennen.

Aufgabe 2.4.1: Schreiben Sie mit Summenzeichen:
a) —1+4+9+14+19
b) 60+ 30420+ 15+ 12 + 10


https://de.wikipedia.org/wiki/Produkt_(Mathematik)\#Endliche_Produkte_mit_vielen_Faktoren
https://de.wikipedia.org/wiki/Leeres_Produkt

3. Logik

Young man, in mathematics you don't understand things.
You just get used to them.

— John von Neumann ®

3.1. Aussagenlogik

Mit Hilfe der Aussagenlogik (engl. propositional calculus) kénnen wir Elementaraussagen
verkniipfen und auf ihren Wahrheitswert untersuchen. Elementaraussagen sind wahr oder
falsch und nicht weiter zerlegbar. ¢ 7

Definition 3.1.1 (Aussage): Nach Aristoteles © ist eine Aussage (engl. proposition) in
unseren Sinne ein sprachliches Gebilde, von dem es sinnvoll ist, zu fragen, ob es wahr
(engl. true) oder falsch (engl. false) ist.

Man nennt dies zweiwertige Logik: jede Aussage ist entweder wahr oder falsch, dies ist ihr
Wahrheitswert (engl. truth value).

Beispiel 3.1.1: Einige Aussagen:
1. Alle Studierenden sind Menschen.
2. Alle Menschen sind Studierende.
3. Es gibt AuBerirdische.
4. Es gibt unendlich viele Primzahlen.
5. Es gibt unendlich viele Primzahlzwillinge (zwei Primzahlen, deren Differenz 2 ist).

Man kann zeigen, dass die Aussagen 1 und 4 wahr sind. Aussage 2 ist jedoch falsch,
solange auch nur ein Mensch existiert, der kein Student und keine Studentin ist. Uber den
Wahrheitswert der 3. und der 5. Aussage kénnen wir zum heutigen Zeitpunkt kein Urteil
abgeben, wir wissen es nicht. Trotzdem sind es valide Aussagen.

Keine Aussagen im mathematischen Sinne sind:
1. Bitte komm nach Hause. (Was kénnte hier wahr oder falsch sein?)
2. Wie geht’s?
3. Du bist bése. (Dies ist eine moralische Aulerung)
4. Grof. (Das ist nur ein Wort, es ist nicht wahr oder falsch)
5

. Colorless green ideas sleep furiously. (Noam Chomsky, 1957: Ein grammatikalisch
korrekter, aber unsinniger Satz. Er ist weder wahr noch falsch)

5 Amerikanischer Mathematiker, Physiker und Informatiker ungarischer Abstammung, 1903-1957
SWeiterfiihrend und vertiefend siehe [KWO05, Kap. 16].

"Wenn Sie es gerne multimedial mégen: Vorlesung iiber Aussagenlogik als Video von Christian Spannagel.
8Griechischer Philosoph und Schiiler des Platon, 384-322 v. Chr.
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3.2. Operationen auf Aussagen

Im Folgenden seien A und B Aussagen. Wir sagen “es gilt A” oder “A gilt nicht”. Eine
Aussage hat immer einen der Werte wahr oder falsch. Wir stellen die Werte wahr und falsch
héufig auch als 1 und 0 (oder w/f oder T/F) dar.

Manche Aussagen sind elementare Aussagen (“Es regnet.”, “Der Boden ist nass.”, “Es ist
dunkel.”). Alle anderen Aussagen werden aus solchen elementaren Aussagen und Operatoren
zusammengesetzt (“Wenn es regnet, ist der Boden nass.”).

Wahrheitswerte bzw. Aussagen konnen wir durch verschiedene Operationen (deren Ope-
ratoren heiflen Junktoren) miteinander verkniipfen (die dadurch eine boolesche Algebra’
bilden kénnen). Das heifit, eine oder mehrerere mit einem Operator verkniipfte Aussagen
bilden einen neue Aussage. Ob diese neue Aussage wahr oder falsch ist, hdngt von den
Werten der beiden verkniipften Aussagen und dem Operator ab. Da es nur endlich viele
mogliche Werte fiir die urspriinglichen Aussagen gibt, kénnen wir diese einfach alle auflisten.
Dadurch entsteht eine Wahrheitstabelle (engl. truth table). Ein Operator ist durch seine
Wahrheitstabelle eindeutig bestimmt.

Wenn zwei Aussagen A und B fiir alle moglichen Wahrheitswerte gleich sind, schreiben wir
A = B. Wir verwenden hier diese besondere Schreibweise, damit sie nicht mit den Zeichen
“=" und “<” verwechselt werden kann. Eine andere verbreitete Schreibweise ist ~.

Die einfachste Operation ist die Negation, oft auch als NOT bezeichnet: das Gegenteil
einer falschen Aussage ist eine wahre Aussage und ebenso ist das Gegenteil einer wahren
Aussage eine falsche Aussage (tertiam non datur). In der Schreibweise der Logik wird fiir
die Negation das Zeichen “—” verwendet, gesprochen “nicht”. Haufig schreibt man auch A
statt = A. Die Wahrheitstabelle fiir die Negation sieht folgendermafien aus:

[ 4]
w
f

T

Die Konjunktion (auch AND oder “Und”) ist wahr, falls beide Teilaussagen wahr sind; ansons-
ten ist sie falsch. Zum Beispiel bedeutet “die Tiir kann gedffnet werden, wenn der Schliissel
gedreht wurde und die Klinke gedriickt wurde”, dass eine der beiden Aktionen alleine nicht
ausreichend ist. Das mathematische Symbol fiir AND ist “A”. Die Wahrheitstabelle sieht so
aus:

Die Disjunktion (auch OR oder “(inklusives) Oder”) ist wahr, falls mindestens eine der
beiden Teilaussagen wahr ist. Beispielsweise sagt der Satz “Ich komme nach Hause, wenn
es regnet oder dunkel wird” aus, dass einer der beiden Griinde ausreichend ist. Vorsicht!

9nach George Boole, englischer Mathematiker, 1815-1864
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Unser normalsprachliches “Oder” ist meist ein exklusives Oder (siche unten). Der Satz
“Trinkst du Bier oder Wein?” bedeutet eben meist nicht, dass man beides mdchte.

Das mathematische Symbol fiir OR ist “V” und dies ist seine Wahrheitstabelle:

| A[B[AVB]
f|f f
flw w
w | f w
w | w w

Die exklusive Oder (XOR, auch: die Kontravelenz) ist wahr, falls genau eine der beiden
Teilaussagen wahr ist. Das mathematische Symbol dafiir ist nicht eindeutig, wir verwenden
hier “@”. A& B wird ausgesprochen “entweder A oder B” oder einfach “X0R” oder “EXOR”.

Wie die XOR-Wahrheitstabelle zeigt, ist XOR selbstinvers, das heifit “A & A = f”. Man kann
XOR auch aus AND, OR und NOT zusammensetzen:

A®B=(AN-B)V(-AANB), alternativ:
A®B=(AVB)AN—(ANB).

Die Implikation oder Folgerung ist dann wahr, wenn aus der ersten Aussage die zweite
folgt. Aus einer falschen Aussage darf sowohl etwas Falsches oder Wahres folgen (ez falso
quodlibet: jeder Schluss aus Falschem ist zuldssig); aus einer wahren Aussage darf aber
nur etwas Wahres folgen. Mit anderen Worten: aus einer wahren Aussage darf nie etwas
Falsches folgen, alles andere ist erlaubt. Man sagt: “aus A folgt B” oder “wenn A, dann
B”. Das Symbol ist “=" und dies ist die Wahrheitstabelle:

|

Auch die Implikation lasst sich mit einfacheren Operationen ausdriicken:

Man sagt auch “A ist eine hinreichende Bedingung fiir B”. Das bedeutet, wenn A vorliegt,
dann folgt daraus auch B.

Davon ist zu unterscheiden, dass A eine notwendige Bedingung fiir B ist. Das bedeutet,
dass es kein B gibt ohne A. A ist also eine conditio sine qua non, eine Bedingung, ohne
die es nicht geht. Formal schreiben wir B = A oder A < B.

11


https://en.wikipedia.org/wiki/Exclusive_or
https://de.wikipedia.org/wiki/Involution_(Mathematik)
https://de.wikipedia.org/wiki/Subjunktion
https://de.wikipedia.org/wiki/Notwendige_und_hinreichende_Bedingung

Vorsicht! Die logische Implikation, wie hier geschildert, kann unserer natiirlichen Sprache
widersprechen und Zusammenhénge nahelegen, die keine sind. Man nennt das auch die
Paradozxien der materialen Implikation. Die logische Aussage “Wenn London in England
liegt, dann ist ein Fuchs ein Sdugetier” ist logisch wahr, aber es existiert kein kausaler
Zusammenhang, obwohl es so klingt. Schlimmer noch: “Wenn London in Frankreich liegt,
dann ist ein Fuchs ein Sdugetier” ist formal ebenfalls wahr!

Als letztes bleibt noch die Aquivalenz. Das mathematische Symbol ist “<” und man sagt:
“A genau dann, wenn B”, “A dann und nur dann, wenn B” oder “A ist dquivalent zu B”
(gelegentlich auch abgekiirzt als “gdw.” und in englischen Texten manchmal geschrieben
als “iff”, mit zwei “f”). Es bedeutet, dass beide Teilaussagen immer zur gleichen Zeit wahr
oder falsch sind. Zum Beispiel: “eine ganze Zahl heifit gerade genau dann, wenn sie ohne
Rest durch 2 teilbar ist”. Die Wahrheitstabelle dazu ist:

|A|B|A& B
flf w
flw f
w | f f
w | w w

Man sagt auch, dass A notwendig und hinreichend fiir B ist, daher auch die Schreibweise.
In Formeln: A< B= (A= B)A (A< B).

Zum Beschreiben von allen zweiwertigen Operationen reichen die Operationen AND, OR und
NOT. ' Daher konnten wir aus ihnen die anderen Operationen aufbauen. Allgemein kann
man jede n-wertige boolesche Operation aus diesen drei basishaften Operationen aufbauen,
z.B. mit der disjunktiven Normalform (DNF). Die erste Formel fiir XOR ist in DNF.

Es gibt eine Rangfolge der Operatoren (engl. operator precedence), die angibt, welcher
Operator stirker bindet. Ohne diese wére die Aussage A V B A C' mehrdeutig, kénnte sie
doch (AV B) A C oder AV (B A C) bedeuten. Die Rangfolge der Operatoren von stark
nach schwach bindend ist:

o Klammern (sind kein Operator),

o Negation, —; Quantoren, V, 3 (siche Kapitel 3.5)
o Konjunktion, A,

e Disjunktion, V,

o Implikation, =,

o Aquivalenz, <,

« Aussagenlogische Aquivalenz, =.

Damit ist A = B < —AV B immer wahr und sieht geklammert so aus: (A = B) <
((mA) vV B). Es ist aber besser, zu viele Klammern zu setzen als zu wenige, wenn dadurch
das Verstandnis erleichtert wird.

10Gje sind hinreichend, aber nicht notwendig! Alleine mit der NAND oder NOR Operation geht es auch. Wissen
Sie, wie?
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Aufgabe 3.2.1: Gegeben seien die folgenden Aussagen:
A: Es ist eiskalt.
B: Es schneit.

Driicken Sie die nachfolgenden Sétze als aussagenlogische Formeln mit Hilfe der Aussagen-
variablen A und B aus.

a) Es ist eiskalt und es schneit.

b) Es ist eiskalt, aber es schneit nicht.
¢) Es ist nicht eiskalt und es schneit nicht.

(&

)
)
d) Entweder es schneit oder es ist eiskalt (oder beides).
) Entweder es schneit oder es ist eiskalt, aber es schneit nicht, wenn es eiskalt ist.
)

f) Wenn es schneit, ist es eiskalt.

Aufgabe 3.2.2: Zeigen Sie mittels Wahrheitstabelle:
1. Agw=-A4
2. A A=f

3.3. Gesetze fiir Aussagen

Wir nennen zwei Aussagen A und B dquivalent, wenn sie unter allen Belegungen denselben
Wahrheitswert annehmen, das heiflt, wenn ihre Wahrheitstabellen identisch sind. Wir
schreiben dann A = B.!!

Nach der Definition der Aquivalenz ist dann die Aussage A < B immer wahr und wir
nennen sie eine Tautologie oder allgemeingiiltig. Eine einfache Aussage, die immer wahr
ist, ist z.B. AV —A.

Das Gegenteil wire eine Kontradiktion oder ein Widerspruch. Das ist eine Aussage, die
immer falsch ist. Ein Beispiel dafiir ist A A —A.

In der folgenden Tabelle sind einige Gesetze zu Aussagen aufgefiihrt.

Hsiehe auch [KWO05, Kapitel 16].
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Konstanz: AN-A=f
AV-A=w
Doppelte Negation: —A=A
Assoziativitét: (AVvB)vVC=AV(BVC(O)
(ANB)AC=AN(BAC)
Kommutativitét: AVB=BVA
ANB=BAA
Idempotenaz: AVA=A
ANA=A
Absorption: AV(AANB)=A
AN(AVB)=A
Neutralitét: Avi=A
AAnw=A
Distributivitat: AV(BANC)=(AVB)A(AV(O)
ANBVC)=(ANB)V(ANC)
De Morgansche Gesetze: 2 -(AVB)=-AAN-B
—|(A/\B) =-AvV-B

Hier sind noch einige weitere Gesetze und Definitionen, die man auch héufiger braucht:

Konstanz: A A=A
Assoziativitét: (Ao B)oC=A® (Ba ()
Kommutativitat: ADB=BaoA

A& B=Bs A
Neutralitét: Apf=A
Aquivalenz: A& B=(A=B)AN(B=A)
Exklusives Oder: A®B=(AVB)AN—-(ANAB)
Implikation: A= B=-AVBEB
Prinzip der Kontraposition: A= B=-B=-4

Aufgabe 3.3.1: NOT, AND und OR reichen zum Ausdriicken von allen méglichen zweistelligen
logischen Operation. Aber kénnte man alle auch mit weniger als drei elementaren Operation
ausdriicken? Welchen?

Aufgabe 3.3.2: Zeigen Sie:
a) (A=B)V(A=0C)=A= (BVC()
b) (A= B)AN(A=C)=A= (BANC)

Aufgabe 3.3.3: Zeigen Sie, dass die beiden Definitionen fiir XOR aussagenlogisch dquivalent
sind. Benutzen Sie dazu die Gesetze zu Aussagen.

12 Augustus De Morgan, englischer Mathematiker, 1806-1871
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3.4. Pradikatenlogik

Mittels Pradikatenlogik (engl. predicate logic) konnen wir Aussagen formulieren, ohne
dazu ein bestimmtes Element betrachten zu miissen. Wir kénnen also Eigenschaften
formulieren.

Mittels Quantoren und Préadikaten kénnen wir Aussagen iiber mehrere Elemente machen
und Eigenschaften verallgemeinern.

Definition 3.4.1 (Préadikat): Ein Pradikat erlaubt das Einsetzen einer festen Anzahl von
Variablen und liefert darauf einen Wahrheitswert zurick. Fin Prddikat, welches n Variablen
annimmt, nennen wir n-stellig.

Beispiel 3.4.1: Das Pradikat “... ist fiktional” liefert auf das Einsetzen von “Moria”,
“Donald Duck” oder “Elysium” den Wahrheitswert wahr, auf das Einsetzen von “Jackie
Kennedy” oder “Ian McKellen” den Wahrheitswert falsch.

Eine Eigenschaft wie “x < 5” ist ebenso ein Prédikat, welches z.B. fiir x+ = 3 den
Wahrheitswert wahr und fiir “z = 10” den Wahrheitswert falsch zuriickgibt. X

Im Folgenden bezeichnen wir Pridikate mit Groflbuchstaben und Variablen, die das
Pradikat annimmt, mit Kleinbuchstaben. Also ist P(z) ein einstelliges Pradikat.

3.5. Quantoren

Jetzt definieren wir Quantoren (engl. quantifiers).

Definition 3.5.1 (Allquantor): Sei P(x) ein einstelliges Pradikat. Um auszusagen, dass
das Pradikat P(x) fir alle x gilt, schreiben wir ¥z : P(x), gelesen: “fir alle z gilt P(x)”.
“Y7” heifit Allquantor (engl. universal quantifier ).

Formal: Enthalte die Folge der x; alle x, dann definieren wir:

Vo : P(z) = /\P(azl) = P(x1) N P(xa) NP(x3) A ...

alle x;

Definition 3.5.2 (Existenzquantor): Sei P(x) ein einstelliges Pradikat. Um auszusagen,
dass P(x) fir mindestens ein x gilt, schreiben wir 3z : P(x) und lesen “es existiert ein x
fiir das P(x) gilt”. “3” nennt sich Existenzquantor (engl. existential quantifier ).

Formal: Enthalte die Folge der x; alle x, dann definieren wir:

dz: P(x) = \/P(a:l) = P(x1) V P(x2) V P(x3) V...

alle x;

Bemerken Sie, dass beide Quantoren eine Aussage tber alle x machen, also alle Elemente
aller Mengen ' (inklusive Zahlen, Studierender und Fahrriider). Meist méchte man
spezifischere Aussagen machen und gibt die Grundmenge direkt mit an. Sei M eine Menge,
dann ist

Ve e M : P(x) = Vz:(zxe M= P(x)).

13Sjehe nachstes Kapitel.
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Und fiir den Existenzquantor:

JreM:P(zx) = Jz:(x € M A P(x)).

Ebenso kann man direkt Bedingungen angeben: Ve > 0 : % < &. Auch das schreibt sich
formal exakt: Ve : (¢ > 0 = 1 < ¢). Das Analoge gilt fiir 3.

Der Allquantor verallgemeinert ein Pradikat auf eine Menge von Elementen. Da diese
Aussage fiir alle Elemente der Menge wahr sein muss, geniigt ein einziges Gegenbeispiel,
um die Aussage zu widerlegen. Z.B. ist die Aussage

Vz € N: (z ist Primzahl = z ist ungerade)

falsch, da es ein (einziges) Element gibt, fiir das das nicht stimmt.

Wenn “()” die leere Menge bezeichnet, dann ist die Aussage Va € ) : A(z) wahr fir ein
beliebiges Pradikat A(x). Es gibt kein z, fiir das die Aussage falsch wére.

Das lasst sich auch einfach beweisen:

Vee: Alx)=Vr: (z € 0 = A(x))
=Vr: (f = Ax))

Aus der Definition der Implikation wissen wir aber, dass eine Folgerung aus etwas Falschem
immer wahr ist:

Veel: Alx)=Vr:w
=w. O

Umgekehrt ist 3z € () : A(x) falsch, da kein x existiert, fiir das die Aussage wahr wire. Der
Beweis funktioniert analog.

Die Schreibweise fiir Quantorenaussagen ist nicht einheitlich. Man liest Vx : P(x), Vo P(x)
oder Vz.P(z).

In der Aussage Vx : P(x) bezeichnen wir x als gebundene Variable, da sie an den Quantor
gebunden ist. Im Gegensatz dazu ist in der Aussage Vx : P(x,y) die Variable y eine freie
Variable.

Quantoren beziehen sich auf so wenig wie moglich (solange und stehen damit auf der Hohe
der Negation in der Rangfolge der Operatoren (siehe Seite 12). D.h., Va : P(z) < Q(y) ist
das Gleiche wie (Vz : P(z)) < Q(y). Sonst miissen Sie klammern: Vz : (P(z) < Q(y)). Im
Zweifel sollten Sie hier (moglicherweise tiberfliissige) Klammern setzen, um Ihre Intention
klar zu machen.

Beispiel 3.5.1: Benutzung von Quantoren:
o Vo €{2,4,6}: x ist gerade
o Jrxe{2,4,6}:2<4
. V5>0:3n0€N:Vn2n0:%<5

Man sagt: “Fiir alle € > 0 existiert ein ng aus N, sodass fiir alle n > ng gilt: % <e.

o VZEN: (z>4= 2% <27
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Es gibt auch einen Quantor, der aussagt, dass ein Pradikat genau einmal wahr ist (Einzig-
keitsquantor). Er ist so definiert, fiir ein Pradikat B(z):

dlz: B(x) = Jz: (B(x) A\Vy: (B(y) =y =x)).

Aufgabe 3.5.1: Schreiben Sie mittels Quantoren:
a) Die Monotonie der Addition: fir z, y, z € N gilt: aus z < y folgt z + 2z < y + 2.

b) Den grofien Fermatschen Satz:'* Fiir kein N 3 n > 2 existieren x, y, z € N fiir die
gilt: ™ + y" = 2™

c) Die Goldbachsche Vermutung: Jede gerade Zahl, die grofer als 2 ist, ist Summe
zweier Primzahlen.

Aufgabe 3.5.2: Definieren Sie einen Quantor 3=2a : B(a), der ausdriickt, dass ein Pridikat
fir genau zwei Elemente gilt.

3.6. Quantorenregeln

Sei A eine Aussage. Dann kann man die Negation einer Quantorenaussage direkt vor die
Aussage A ziehen, wenn man den Quantor “umdreht”:

(Vo : A(z)) = Jz : ~A(x)
=3z : A(z)) = Vo : ~A(x)

Zur Motivation: Die Aussage —(Vx : A(z)) bedeutet, dass Vz : A(x) falsch ist. Das bedeutet
aber, dass es mindestens ein x geben muss, sodass A(zx) falsch ist. Das kénnen wir mittels
Quantor schreiben als 3z : - A(x).

Umgekehrt gilt fiir den Existenzquantor: Die Aussage —(3z : A(z)) heifit, dass es kein =
gibt, fiir das A(x) gilt. Also gilt fir alle x die Aussage A(x) nicht. Daher: Va : =A(z).

Wenn man annimmt, dass es nur zwei verschiedene Werte fiir x gibt, dann ergeben sich
. =4
aus den Quantorenregeln die De Morganschen Gesetze. '°

Aufgabe 3.6.1: Negieren Sie folgende Aussagen logisch:
a) Alle Studenten, die nicht Informatik studieren, sind doof.

b) Es existiert eine gerade Zahl, die nicht die Summe zweier Primzahlen ist. Fiir alle
geraden Zahlen gilt: Sie sind Summe zweier Primzahlen.

Aufgabe 3.6.2: Gegeben sei die Aussage “Jeder blaue Zwerg mag Schokolade”. Welche
der folgenden Behauptungen widerlegt die Aussage?

im 17. Jahrhundert von Pierre de Fermat (1607-1665) formuliert, aber erst 1994 von Andrew Wiles
(geb. 1953) bewiesen.

15Ubersicht iiber Quantorenregeln im Netz: http://www.reisz.de/qa.htm und http://www.reisz.de/q
a2.htm (secco).
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a) Kein Zwerg mag Schokolade.

b) Kein Zwerg mag Schokolade, und es gibt einen Zwerg der blau ist.
c) Kein Zwerg ist blau.

d) Kein Zwerg ist blau oder mag Schokolade.

e) Es gibt einen Zwerg, der nicht blau ist.

f) Es gibt einen Zwerg, der blau ist und keine Schokolade mag.

g) Es gibt einen Zwerg, der nicht blau ist und Schokolade mag.

h) Es gibt einen Zwerg, der nicht blau ist oder keine Schokolade mag.

i) * Zeigen Sie a) mittels Pradikatenlogik.
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4. Mengen

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.

— Leopold Kronecker ¢ (1893)

4.1. Beschreibung

Nach Georg Cantor 7 ist eine Menge (engl. set) eine Ansammlung von wohlunterscheidbaren
Objekten der Anschauung oder des Denkens. Das kdnnen Zahlen sein, aber auch jede
andere Form von (evtl. abstrakten) Objekten. Auch andere Mengen konnen in einer Menge
enthalten sein. Wir werden uns mit diesem naiven Mengenbegriff begniigen, eine tiefere
Betrachtung liefert die axiomatische Mengenlehre in der Mathematik.

Sei M eine Menge und x ein Objekt dieser Menge, so sagen wir, dass x ein Element der
Menge M ist. Wir schreiben dafiir x € M. Es muss entscheidbar sein, ob ein Element x
in der Menge M enthalten ist oder nicht, das nennt sich die Wohldefiniertheit der Menge.
Ist x kein Element der Menge M, so schreiben wir x ¢ M. Wollen wir eine Aussage tiber
mehrere Elemente machen, so schreiben wir auch z, y € M.

Wir kénnen endliche Mengen beschreiben durch Aufzéhlung ihrer Elemente. Dabei werden
die Elemente durch geschweifte Klammern (“{” und “}”) eingefasst:

B ={0,1},
F = {rot, grin, blau},
A ={ao,w},

P={1,z,2%2%}.1%

Die leere Menge (engl. empty set) (die Menge ohne Elemente) wird mit () (oder auch mit
{}) bezeichnet.

0= {}.
Mengen sind ungeordnet (engl. unordered):
{2,3,5} = {5,2,3}.

Jedes Element kommt nur einmal in der Menge vor, selbst, wenn es mehrfach angeben
wird. Daher miissen die Elemente wohlunterscheidbar sein.

{6,4,6} = {4,6}.
Wenn die Abfolge klar ist, kénnen wir uns mit “...” Schreibarbeit sparen:
D=1{0,1,2,...,9}.
Auf diese Weise kann man auch unendliche Mengen beschreiben:

G=1{0,2,4,...}.

Deutscher Mathematiker, 1823-1891
"Deutscher Mathematiker und Begriinder der Mengenlehre, 1845-1918

19


https://de.wikipedia.org/wiki/Leopold_Kronecker
https://de.wikipedia.org/wiki/Georg_Cantor

Wir kénnen auch eine Menge definieren, indem wir eine Eigenschaft ihrer Elemente
beschreiben. Die folgende Zeile liest sich “die Menge aller  aus N mit der Eigenschaft: x
ist eine Primzahl”:

P = {z € N| z ist eine Primzahl}.
Damit kénnen wir die Pradikatenlogik aus Kapitel 3 benutzen, um Mengen zu definieren:

G'={z|yeEZ:z=2y}

Es gibt einige haufig benutzte grundlegende Mengen, die zur besseren Kennzeichnung mit
einem doppelten senkrechten Strich geschrieben werden (in der englischsprachigen Literatur
schreibt man diese Mengen auch gerne fett, also N, Z oder R). Das sind unter anderem
diese:

o Die Menge der natiirlichen Zahlen (engl. natural numbers): N :={1,2,3,...}.
o Die Menge der natiirlichen Zahlen mit Null: Ny = {0,1,2,3,...}.
o Die Menge der ganzen Zahlen (engl. integers): Z := {0,+1,4+2,£3,...}.

o Die Menge der rationalen Zahlen (engl. rational numbers):

Q:={%|acZbecN}
o Die Menge der reellen Zahlen (engl. real numbers): R.

o Die Menge der komplexen Zahlen (engl. complex numbers): C = {a+ib | a,b € R},
wobei i die imagindre Einheit ist und definiert ist als i2 = —1.

Sei z ein Element einer dieser Mengen, dann heifit «
e positiv, falls x > 0,
e negativ, falls x < 0,
o nicht-negativ (engl. non-negative), falls z > 0.

Intervalle einer Menge werden durch ihre untere und obere Grenze angegeben. Dabei un-
terscheidet man offene (engl. open) und abgeschlossene Intervalle (engl. closed intervals).

o Das abgeschlossene Intervall [a,b] einer Menge M ist definiert als [a,b] == {z € M |
a < x < b}, das heifit, die Grenzen liegen im Intervall.

o Das offene Intervall (a, b) einer Menge M ist definiert als (a,b) == {z € M | a < x < b},
das heif3t, die Grenzen sind nicht im Intervall enthalten.

o Es gibt auch halboffene Intervalle, beispielsweise ist das Intervall [a, b) einer Menge
M definiert als [a,b) = {z € M | a <z < b}.

Die obere Intervallgrenze kann oo sein, resp. die untere Grenze —oo. Das ist eine Art zu
schreiben, dass auf dieser Seite keine Grenze existiert.'” Beachten Sie, dass die Seite mit
dem “oo”-Zeichen eine offene Grenze beschreibt, also runde Klammern zu benutzen sind.

¥Kapitel ?? beschaftigt sich mit Mengen von Funktionen.
¥Das ist ein Beispiel fiir abuse of notation: eine mathematische Schreibweise, die formal inkorrekt, aber
intuitiv (hoffentlich) richtig verstanden wird.
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Beispiel 4.1.1:

RZO = [0700)
R_ = (—00,0)

Aufgabe 4.1.1: Geben Sie die Elemente der folgenden Mengen an:
a) reN:z <4
b) zeR: 2?2 =1
c)reR:JyeQ:zy=1
)

d) 2€Z:2<100 NIy eZ:y>=x

4.2. Vereinigung und Schnitt

Wir kénnen auf Mengen diverse Operationen anwenden.?’ Die Operationen kénnen wir sehr
schon mit den Methoden der Logik aus dem letzten Kapitel beschreiben und beweisen.

Oft benutzt man auch Venn-Diagramme, *' um Beziehungen von Mengen darzustellen. Sie

sind sehr intuitiv, ersetzen aber keinen formalen Beweis.

Definition 4.2.1 (Mengenoperationen): Seien Mengen A und B gegeben, dann definieren
wir

e die Vereinigung (engl. union) C = AU B: C enthdlt alle Elemente aus A und alle
Elemente aus B. In der Sprache der Logik heifst das:

AUB = {z|x€ AVzx € B}.

e Der Schnitt (engl. intersection) C = AN B: C enthdlt alle Elemente, die sowohl in
A als auch in B sind. Mittels der Logik definieren wir:

ANB = {z|x€ ANz € B}.

e Die Differenz (engl. set difference) C = A\ B: C enthdlt alle Elemente aus A, die
nicht in B sind. Man sagt auch “das Komplement von B in Bezug auf A” oder “A
ohne B”. Die Definition lautet:

A\B = {z |z € ANz & B}.

Eine andere Schreibweise statt A\ B ist B, wobei hier zuerst unklar bleibt, welches
die Obermenge ist.

20Video von Christian Spannagel iiber Mengenlehre.
21 John Venn, englischer Logiker und Philosoph, 1834-1923
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4.3. Teilmengenbeziehungen

Definition 4.3.1 (Teilmengenbeziehungen): Weiterhin konnen wir Aussagen tber das
Verhdltnis zweier Mengen zueinander machen:

o Wir nennen A und B gleich, geschrieben A = B, falls gilt:

A=B =Vr:(x€e A& x€B).
Wir nennen A eine Teilmenge (engl. subset) von B, geschrieben A C B, falls alle

Elemente aus A auch in B liegen. Die Definition lautet:

ACB =Vr:(x€e A=z €B).

Umgekehrt heiffit B Obermenge (engl. superset) von A: B D A.

FEine echte Teilmenge (engl. proper subset) A C B (oder, noch expliziter: A C B) ist
eine Teilmenge A von B mit A # B. Also:

ACB = ACBAA#B.

Analog B D A.

Wir nennen A und B disjunkt (engl. disjoint), falls es kein Element gibt, welches in
beiden Mengen enthalten ist, also falls gilt: AN B = ().

Die Teilmengenbeziehungen fiir die uns wohlbekannten Mengen sehen so aus:

0cNCNgcZcQcRcC.

Beispiel 4.3.1: Seien die Mengen A = {2,3,5,7}, B = {1,2,4,8}, C = {5,7} gegeben.
Dann gilt:

C CA,

ADC,
AUB=1{1,2,3,4,5,7,8},
ANB ={2},

A\ B =1{3,5,7},
BnNnC =40,
A\ D= A

Aufgabe 4.3.1: Sei M = {—1,0,1}. Welche der folgenden Aussagen sind wahr?

a) M CN
b) MCZ
c) MCM
d) MNZ=M
e) MUZ=M
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f) Mu{0,1} ={0,1}
g) MNR=RNM

h)

1

J

)
)

M c (N\Z)u{o,1})
M c ((z\N)u{0,1})
M c ((Z\N)u{-1,0})

Einige Eigenschaften, die aus den Definitionen folgen, sind:

Die Vereinigung der leeren Menge mit einer beliebigen Menge A ergibt A: AU = A.
Der Schnitt aus der leeren Menge mit jeder Menge A ergibt die leere Menge: ANQ = (.
Die leere Menge () ist Teilmenge jeder Menge A: () C A.

Jede Menge A ist Teilmenge ihrer selbst: A C A. Die leere Mengen und die Menge
selbst nennt man auch die trivialen Teilmengen.

Die Gleichheit zweier Mengen A und B gilt genau dann, wenn:
(A=B)< (ACBABCA).

Das ist teilweise einfacher zu beweisen als die Gleichheit nach der obigen Definition.

Der Schnitt einer Menge A mit sich selbst und die Vereinigung mit sich selbst ergeben

wieder A:
AUA=A und ANA=A.

Vereinigung und Schnitt sind assoziativ. Seien A, B und C Mengen, dann gilt:
(AUB)UC =AU (BUCQO),
(AnNB)NC=An(BNCQO).

Die De Morganschen Gesetze gelten auch auf Mengen. Seien A, B und C' Mengen
mit A C C und B C C. Die De Morganschen Gesetze besagen dann:

ANB=AUB, oder anders geschrieben
C\(ANB)=(C\A)U(C\ B).

Ebenso:

AUB=ANDB, oder anders geschrieben
C\(AUB)=(C\A)N(C\ B).

Jetzt konnen wir die Gesetze der Logik benutzen, um aus den Definitionen der Mengenope-
rationen einige Eigenschaften zu beweisen:

Sei A eine Menge. Zu zeigen:

AND=10.
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Beweis: Nach Definition von Schnitt ist das:

{r|lzeAnz e} =
{z |z € ANfalsch} =
{z | falsch} =

{}=0. O

Nun beweisen wir die Assoziativitat des Schnitts:
Seien A, B, C Mengen. Zu zeigen:
(ANB)NC=An(BNCQC)
Beweis: Nach Definition von Mengengleichheit heiffit das:
Ve:(ze(ANB)NC &z e AN(BNC))
Wihle ein x aus: fest, aber beliebig. Dann gilt:

re(ANB)NC &
re(ANB)ANzeC &
(e ANz eB)NzelC &

Nach Definition ist A assoziativ:

reAN(xeBAzel) <
reANz e (BNO) &
reAN(BNC)sxe AnN(BNCO)

Auf beiden Seiten steht das Gleiche, daher gilt die Aquivalenz. Da z beliebig war, gilt die
Aussage fiir alle z und ist damit bewiesen. O

Als Letztes beweisen wir eines der De Morganschen Gesetze:

Seien A, B, C Mengen mit (AU B) C C. Zu zeigen:

AUB=ANB
Oder, mit C als Obermenge von A und B:
C\(AUB) = (C\A)N(C\ B)
Beweis: Nach Definition von Komplement:
{z|zeCAN-(xe(AUB))} =

Nach Definition von Vereinigung:

{r|zeCAN-(reAVzeB)}=
Nach Anwendung von De Morgan:

{zlzeCAN(xgANz ¢ B)} =
{r|zeCAhxg AN ¢ B} =
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Wir erweitern (nach Idempotenz):
{z|lzeChaegANzeCANx ¢ B} =
Nach Definition von Komplement & Schnitt:

{z]ze(C\A) Az e (C\B)}=(C\A)N(C\B) O

Eine interessante Beobachtung: bei Mengen ist (im Gegensatz zu reellen Zahlen) der Fall
moglich, dass weder A C B noch A O B gilt! Das heifit, die Negation von A C B ist nicht
A D B, sondern (A C B) oder A Z B. %

Aufgabe 4.3.2: Zeigen Sie die Absorptionsgesetze fiir Mengen:
a) M1U(M1ﬁM2) =M
b) Mlﬂ(MlUMg) = M,

4.4. Weitere Operationen auf Mengen

Definition 4.4.1 (Kardinalitét): Die Anzahl der Elemente einer endlichen Menge M heifit
Kardinalitét (engl. cardinality) oder Méachtigkeit. Wir schreiben dafir |M|, manchmal
findet sich auch #M .

Hat eine unendliche Menge M die gleiche Michtigkeit wie N, d.h., existiert eine Bijektion **
zwischen M und N, so sagt man M sei abzdhlbar unendlich und habe die Méachtigkeit
No = |NJ, gesprochen “Aleph Null” (der erste Buchstabe des hebraischen Alphabets). Die
Mengen Z und Q sind abzahlbar.

Existiert eine solche Abbildung nicht, so nennt sich M diberabzihlbar. Z.B. ist R iiberab-
zéhlbar.

Beispiel 4.4.1: Sei A = {1,2,3}, dann ist |A| = 3.
Die leere Menge hat Méchtigkeit 0: || = 0. X

Definition 4.4.2 (Potenzmenge): Zu einer gegebenen Menge A ist die Potenzmenge (engl.
power set) P(A) die Menge aller Teilmengen von A.

P(A) = {B| B C A}.

Die Potenzmenge P(M) zu einer Menge M hat die Kardinalitat 2™/, Die trivialen
Teilmengen von A () und A selbst) sind auch in der Potenzmenge enthalten.

Beispiel 4.4.2: Sei A = {1,2,3}, dann ist P(A) = {0,{1},{2},{3},{1,2},{1,3},
{2,3},{1,2,3}}. Nachzihlen zeigt, dass |P(A)| = 2/4 = 8. X

22Der Grund dafiir ist, dass die Teilmengenbeziehung zwar eine partielle, aber keine totale Ordnung ist,
siehe Abschnitt ?7.

23Die Kardinalitéit einer unendlichen Menge ist nicht so einfach anzugeben. Erstaunlicherweise gibt es hier
verschiedene Machtigkeiten.

247um Begriff der Bijektivitit sieche Abschnitt ??.
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Aufgabe 4.4.1: Zeigen Sie: A C B = P(A) C P(B).

Definition 4.4.3 (Kartesisches Produkt): Das kartesische Produkt A x B zweier Mengen
A und B ist die Menge aller geordneten Paare (a,b) mit a € A und b € B. “Geordnetes
Paar” bedeutet, dass die Reihenfolge von a, b wichtig ist, im allgemeinen also (a,b) # (b, a)
gilt. *° Formal gilt:

Ax B :={(a,b)|a€ ANbe B}.

Beispiel 4.4.3: Sei R ={1,2,3,...,8} und L = {a,b,c,...,h}. Dann ist
(2,0),(2,0),(2,0),...,(2,h),

(8,a),(8,b),(8,¢),...,(8,h)}.

X
Sei B das n-fache kartesische Produkt A; x As x ... x A, von Mengen A;, dann nennt
man ein Element von B ein n-Tupel. Das heifit: B = {(a1,aq,...,a,) | a; € A;}. Ein Paar

ist also ein 2-Tupel.

Wir schreiben “im allgemeinen (a,b) # (b,a)”, da es spezielle Belegungen von a, b gibt, fiir die es eben
doch gilt, z.B. hier fiir a = b.
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5. Datentypen

To program is to understand.

— Kristen Nygaard 26

In der Informatik beschéftigen wir uns unter anderem damit, mathematische Sachverhalte
in Programmen abzubilden und mit deren Hilfe Ergebnisse zu berechnen. Dazu miissen
wir Elemente von Mengen in Variablen speichern, um mit ihnen rechnen zu koénnen. Diese
Variablen haben einen Datentyp (engl. data type), der bestimmt, wie sie gespeichert werden
und welchen Wertebereich sie haben.

Dieses Kapitel schlidgt eine Briicke zwischen Theorie und Praxis. Wir werden sehen,
wie die theoretischen Konzepte der Mathematik sich in der Praxis des Programmierens
wiederfinden lassen.

5.1. Zahlensysteme

Mittels der Summennotation aus Abschnitt 2.4 kénnen wir einen neuen Blick auf Zah-
lensysteme werfen. Welche Zahl wird beschrieben, wenn wir “138” schreiben? Normale
Konvention ist, dass wir in der Mathematik Zahlen im Zehnersystem notieren. Damit hat
die letzte Stellen den Wert 1, die zweitletzte den Wert 10, etc. Wir kénnen es allgemeiner
schreiben:

Definition 5.1.1 (Dezimalnotation): Sei eine Zahl a im Dezimalsystem als eine Abfolge
von Ziffern gegeben, also als apan_1 ...ay, wobei 0 < a; < 9. Dann kénnen wir a auch

schreiben als %7
n

a:Zai - 10°%.

i=0
Im obigen Beispiel ist dann ag = 8, a; = 3 und as = 1.

Die Dezimalschreibweise hat ihren Ursprung natiirlich in der Anzahl unserer Finger. Die
Simpsons sollten eigentlich im Oktalsystem (engl. octal numeral system) rechnen, da sie
nur acht Finger haben (lediglich Gott hat zehn).

In der Informatik haben wir nur zwei “natiirliche” Ziffern: 0 und 1, die ganz simpel die
Zusténde “an” und “aus” darstellen. Damit bietet es sich fiir uns an, Zahlen im Dualsystem
oder Bindrsystem (engl. binary numeral system) darzustellen. Wir verwenden hier einen
Index am Ende der Zahl, um das Zahlensystem kenntlich zu machen. Der Index gibt die
Basis des Zahlensystems in Dezimalschreibweise an. Die Dezimalzahl “1381¢” schreibt sich
in oktal also “212g” und in bindr “100010102".

Damit erweitern wir jetzt unsere Definition von Zahlensystemen:

26Norwegischer Informatiker und Pionier der Programmiersprachen, 1926-2002
27Sje erinnern sich an das Summenzeichen aus Abschnitt 2.47
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Definition 5.1.2 (Notation in beliebigen Zahlensystem): Sei im Zahlensystem mit Basis
beN, b>1 eine Zahl a als eine Abfolge von Ziffern gegeben, also als anan_1 ... ag, wobei
0 <a; <b. Dann kénnen wir a schreiben als

n

Héaufig werden Zahlen in der Programmierung auch in hezadezimal (kurz: “in hex”)
angegeben, das heifit in Basis 16. Die fehlenden Ziffern iber der 9 werden durch die
Buchstaben a, b, c, d, e, f dargestellt. 138 wird in hex also als “8aj” geschrieben.

Viele Programmiersprachen bieten die Moglichkeit, Zahlen direkt in verschiedenen Zahlen-
systemen anzugeben. Dafir wird oft ein Préfix verwendet:

“oktal‘lﬂnﬁr‘ hexadezimal

0 0x
Oo 0x

Ob

C/C‘H' 28
Python

Unsere Beispielzahl 138 schreibt sich also in C/C++ auch als 0212 oder 0x8a und in Python
auch als 00212, 0b10001010 oder 0x8a.

Wie koénnen Sie einfach eine Zahl nach bindr konvertieren? Der folgende Python Code soll
das verdeutlichen:

from __future__ import print_function, division

def to_bin(z):

nnn

Funktion zum Konvertieren nach Binaer.

Eingabe: Zahl z, nicht-negativ.

Ausgabe: Zahl zur Basis 2.

s =
p = 2x*(z.bit_length() - 1) # hochstes gesetztes Bit
while p > O:

if p <= z:
zZ=2z-7Dp
s += "1"

else:
s += "0O"

p=p// 2

return s
if __name == "_ main__":

import sys
print(to_bin(int(sys.argv[1])))

28 Ja, C/C++ hat keinen Prifix fiir Bindrzahlen und ja, eine 0 leitet eine Oktalzahl ein! Das gibt wunderschéne
Bugs, wenn ein Vergleich mit 42 einfach nicht klappen will: if (a == 042) { ... }. ©)
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Der Algorithmus geht alle Zweierpotenzen durch, von hoch nach niedrig und schreibt dann
jeweils eine “1” oder eine “0”.

Aufgabe 5.1.1: Berechnen Sie den Bindrwert folgender Dezimalzahlen:

5.2.

4219
12319
40819
23019
16919
314140

Skalare Datentypen

Jede Programmiersprache hat ihre eigenen Datentypen. Wir betrachten hier exemplarisch
die Datentypen aus C/C++ und Python. Die hier angegebenen Wertebereiche W' gelten
fiir viele, aber nicht notwendigerweise alle Implementationen dieser Sprachen.

C/C++ unsigned speichert nicht-negative ganze Zahlen kleiner als 232, also:
W ={z e Ny |z <23}

C/C++ int speichert ganze Zahlen zwischen —(23!) und 23! — 1 inklusive, also:
W={zcZ|—(2%) <z <23}

Python int speichert ganze Zahlen so lange der Speicher reicht. Fiir die meisten
praktischen Belange heifit das also: W = Z.

C/C++ double und Python float speichern Gleitkommazahlen mit doppelter Ge-
nauigkeit (engl. floating point numbers with double precision) mit Betrag kleiner als
~ 1.798 - 103%® und einer Genauigkeit von ca. 15 Dezimalstellen. Also:

W = {z € R | z darstellbar als IEEE 754 Gleitkommazahl mit doppelter Genauigkeit
}.

Die Details der Gleitkommadarstellung sind knifflig und geben immer wieder Anlass
zum Staunen, siehe unten.

C/C++ bool speichert die Wahrheitswerte true und false, Python bool speichert
die Wahrheitswerte True und False.
Eine Darstellung ist: W = {wahr, falsch}.

Es folgt ein kleiner Exkurs zu den Freuden der floating point Arithmetik. Siehe Floating
Point Arithmetic: Issues and Limitations fiir eine kurze Einfiithrung zu Problemen von
floats in Python. Mehr unter The Perils of Floating Point fiir einige erstaunliche Effekte
(in FORTRAN, yikes!).

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17)

Type

"help", "copyright", "credits" or "license" for more information.

>>> a = 0.1
>>> sum = 0.0
>>> for i in range(10):

sum += a
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>>> sum == ax10

False

>>> a*x10

1.0

>>> sum

0.9999999999999999

>>> sum = 0.0

>>> for i in range(10):

>>> sum += a

>>> print("{:.30}".format (sum))

>>> 0.100000000000000005551115123126
>>> 0.200000000000000011102230246252
>>> 0.300000000000000044408920985006
>>> 0.400000000000000022204460492503
>>> 0.5

>>> 0.599999999999999977795539507497
>>> 0.699999999999999955591079014994
>>> 0.799999999999999933386618522491
>>> 0.899999999999999911182158029987
>>> 0.999999999999999888977697537484

Exkurs Ende. ®

Man darf also nicht glauben, dass alles, was man sich ausdenkt und als Programm
formuliert, auch genau so hinkommt, wie es der Programmcode suggeriert. Das Problem
in obigem Beispiel ist die mangelnde Genauigkeit. An anderer Stelle ist es oft der zu kleine
Wertebereich einer Variablen (der dann einen Uberlauf (engl. overflow) erzeugt). Behalten
Sie das im Kopf, wenn Sie Probleme aus der Mathematik als Programm formulieren.

Jetzt haben wir Datentypen zur Darstellung von Werten aus N, Ny, Z und R kennengelernt.
Wie aber stellt man Werte aus Q dar? Die Antwort: es gibt in C/C++ keinen eingebauten
Datentyp, um Werte aus Q exakt zu speichern, man kann ihn aber nachriisten, z.B. durch
die Boost Rational Number Library. In Python wird eine Klasse mitgeliefert, die durch
den Befehl import fractions geladen werden kann.

Wir kénnten uns den Datentyp auch selber schreiben. Skizzieren wir, was dazu nétig
ware:

e Zwei Zahlen a, b € Z mit b # 0,

o eine Funktion, die den grofiten gemeinsamen Teiler (ggT) errechnet, damit man
kiirzen kann. %’ Das wird néotig z.B. fiir Vergleiche: % = %.

e eine Funktion, die auf das kleinste gemeinsame Vielfache erweitert, damit man zwei

Zahlen addieren kann: % + % = %

29Gjehe Abschnitt ??
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5.3. Mengen in C/C++ und Python

In C++ kann man Mengen durch das set Template deklarieren. Fiir die entsprechenden
Operationen auf Mengen werden Funktionen verwendet, die allerdings aufwindig zu
benutzen sind.

Python hat schénen Support fiir Mengen durch den Datentyp set, der einfach zu bedienen
ist. Die Operatoren sind stark der mathematischen Notation nachempfunden.

Wir listen hier einige der C++ Funktionen und Python Operatoren auf und ihre vergleichbare
Bedeutung in mathematischer Notation. Dabei ist « ein Element und A und B Mengen.

‘ Math. Notation | C++ Code Python Code
Ist Element von reA A.find(x) != A.end() | x in A
Vereinigung AUB set_union() A | B
Schnitt ANB set_intersection() A&B
Differenz A\ B set_difference() A-B
Gleichheit A=B A == A ==B
Teilmenge ACB includes() A <=B
Echte Teilmenge | A C B includes() && A !'= B | A < B
Obermenge ADB includes() A >=B
Echte Obermenge | A D B includes() & A !'= B | A > B

Es sollte klar sein, dass man aus praktischen Griinden mit den Mengenoperationen einer
Programmiersprache nur endliche Mengen darstellen und behandeln kann. Die Menge mit
allen Elementen wird dazu im Speicher des Rechners hinterlegt und der ist nun mal (engen)
Grenzen unterworfen. Pridikate wie x € N kann man nicht iber Mengenoperationen in
Programmiersprachen 16sen.

So sehen die Python Operatoren “in action” aus:

Python 3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:57:17)
Type "help", "copyright", "credits" or "license" for more information.
>>> A = {0,2,1}

>>> A

{0, 1, 2}

>>> B = {2,3}

>>> B

{2, 3}

>>> A & B

{2}

>> A | B

{o, 1, 2, 3}

>> A - B

{o, 1}

>>> A <= B

False

>>> B <= A

False

>>> 2 in A

True

Und jetzt kommt der entsprechende C++ Code. Man sieht, dass es hier einiges mehr an
syntaktischem Overhead gibt. Dafiir ist der Code einiges schneller in der Ausfithrung.
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#include <iostream>
#include <set>
#include <algorithm>
#include <iterator>
using namespace std;

void set_out(const set<int>& S) {
for (auto x : S) cout << x << " ";
cout << endl;

}

void main() {

set<int> A, B, C, D, E;

A.insert(0);

A.insert(2);

A.insert(1);

set_out (A); // output: 0 1 2
B.insert(2);

B.insert(3);

set_out(B); // output: 2 3
set_union(A.begin(), A.end(), B.begin(), B.end(), inserter(C, C.begin()));
set_out(C); // output: 0 1 2 3

set_intersection(A.begin(), A.end(), B.begin(), B.end(), inserter(D, D.begin()));
set_out(D); // output: 2

set_difference(A.begin(), A.end(), B.begin(), B.end(), inserter(E, E.begin()));
set_out(E); // output: 0 1

cout << includes(A.begin(), A.end(), B.begin(), B.end()) << endl; // output: 0
cout << includes(B.begin(), B.end(), A.begin(), A.end()) << endl; // output: 0
cout << (B.find(2) != B.end()) << endl; // output: 1

Was lehrt uns das? Antwort: nicht jede Sprache ist gleichermaflen fiir jedes Problem
geeignet. Daher sollte man eine “passende” Sprache fiir das jeweilige Problem wéhlen, so
weit das moglich ist.

Ebenso lehrt es uns, dass Diskussionen & la “Sprache X ist besser als Sprache Y” zu wenig
fithren. 39

5.4. Boolesche Operationen in Programmiersprachen

Natiirlich konnen die Programmiersprachen C/C++ und Python die Operationen AND,
OR, XOR und NOT berechnen. Allerdings muss man unterscheiden zwischen bitweisen und
logischen Operationen.

Was wir in Kapitel 3 besprochen haben, nennt sich in den Programmiersprachen logische
Operationen. Diese schreiben sich folgendermafien:

math. Notation | C/C++ | Python
Konjunktion ANB A & B | A and B
Disjunktion AV B A|l B| AorB
Negation —-A )\ not A

300K, alles ist besser als Intercal oder Whitespace! ©
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Sie liefern die Ergebnisse, die man von ihnen (mathematisch gesehen) erwartet und der
Datentyp ist bool in C/C++ oder Python.

Weiterhin gibt es aber auch bitweise Operationen. Das Vorhandensein dieser Operationen ist
eine besondere Eigenschaft von Programmiersprachen auf Bindrrechnern, in der Mathematik
sind sie wenig gebrauchlich.

Bitweise Operationen arbeiten auf jedem Bit einer Ganzzahl-Variablen.?! Z.B. wird die
Zahl 42 binér dargestellt als 42 = 2 + 8 + 32 = 1010102, ebenso 15 =1+2+44+8 = 11115.
Das bindre AND ist die Anwendung der Konjunktion auf jeder Binérstelle beider Werte: also
1010102 AND 11115 = 10105. Der Datentyp des Ergebnisses ergibt sich aus den Datentypen
der Operanden.

In unseren Programmiersprachen schreiben sich die bitweisen Operationen wie folgt:

math. Notation | C/C++ | Python
AND AANB A& B A& B
OR AV B A | B A | B
XO0R A®B A~ B A~ B
NOT -A ~A ~A

Warum gibt es zwei Ausfithrungen dieser Operationen? Der hauptsichliche Unterschied ist,
dass die logischen Operationen short-circuit evaluation unterstiitzen, d.h., die Auswertung
eines logischen Ausdrucks wird so frith wie moglich beendet.

Beispielsweise wird in der Zeile “if (1 || b) ...” der Wert von b nicht ausgewertet, weil
klar ist, dass der ganze Ausdruck true ist, da das erste Argument schon true ist. Analoges
gilt fur “if (0 && b) ...”: dort wird b nicht ausgewertet, da klar ist, dass der ganze

Ausdruck false sein wird. In den meisten Programmiersprachen ist klar geregelt, dass in
solchen Féllen der uberfliissige Teil der Aussage garantiert nicht ausgewertet wird.

Daher kann man in C/C++ folgende Zeile ohne Gefahr einer Division durch Null schrei-
ben: “if (a !'= 0 && 1/a > b) ...”. Der zweite Ausdruck (“1/a > b”) wird nur dann
ausgefiihrt, wenn der erste wahr war, das ist im Standard der Programmiersprache so
festgelegt. Sollte der erste Ausdruck falsch sein, wird der zweite nicht mehr ausgewertet, da
die Konjunktion nicht mehr wahr werden kann: wir wissen, dass das if () nicht ausgefiihrt
werden kann. Damit spart man nicht nur Rechenzeit, sondern kann Programmcode auch
kompakter schreiben.

Auch hier wird wieder augenfillig, dass teilweise eine direkte Ubertragung mathematischer
Sachverhalte in Programmiersprachen zu erstaunlichen Ergebnissen resp. Problemen fiihren
kann.

31Giehe Zahlensysteme, Abschnitt 5.1.
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6. Beweistechniken

Math answers aren't determined by votes.

— Marilyn vos Savant®?

Im folgenden Abschnitt wollen wir uns damit befassen, was es heifit, eine Aussage zu
beweisen und wie wir dabei vorgehen. Dazu gibt es verschiedene Beweistechniken.

Ein mathematischer Satz besteht immer aus zwei Teilen: Einer Behauptung (engl. state-
ment) und einem Beweis (engl. proof), der die Giltigkeit der Behauptung zeigt. Die
Behauptung besteht meistens aus einigen Voraussetzungen und der tatséchlichen Aussa-

ge.
Beispiel: Seien a, b € R, dann gilt: (a + b)? = a® + 2ab + b*.
—_———

Voraussetzungen Aussage

Der Beweis dazu folgt im nédchsten Abschnitt.

Es gibt verschiedene Arten von Beweisen. ** Die wichtigsten gehen wir hier einmal durch.

6.1. Umformen von Gleichungen

Um Gleichungen der Form 77 = T5 zu l6sen, wobei 77 und 75 giiltige Terme sind, benutzen
wir sogenannte Aquivalenzumformungen. Dabei handelt es sich um Umformungen, die den
Wahrheitsgehalt der gesamten Gleichung erhalten. In N, Z, Q, R oder C sind dies beispiels-
weise Addition, Subtraktion, sowie Multiplikation und Division mit beliebigen Konstanten
= 0. Beachten Sie, dass Quadrieren nur einem Zahlenbereich ohne negative Zahlen eine
Aquivalenzumformung ist (also in N, Ny, Q4 oder R )! Eine hinreichendes Kriterium fiir
Aquivalenzumformungen ist die Injektivitit der Operation, siche Abschnitt ??.

Beispiel 6.1.1:
T + 12 = bx + 16.

Diese Gleichung lasst sich durch die folgenden Umformungen sehr leicht 16sen.

7r +12 =5z + 16 | — 5z
& Trx+12 -5z =5x+ 16 — 5z
& 2 + 12 = 16 |- 12
& 20+12-12=16—-12
& 20 =4 | =2
& 2x/2 =4/2
& T =2

X

32 Amerikanische Kolumnistin und Schriftstellerin, geb. 1946. Bekannt durch ihre Kolumne, speziell durch
ihren Artikel zum Ziegenproblem.
33Es gibt noch viele andere Arten von Beweisen, die wir hier aber nicht behandeln. ®
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In der Linearen Algebra lernen Sie das Gaufische Eliminationsverfahren (engl. Gaussian
elimination) kennen. Damit konnen lineare Gleichungssysteme in beliebig vielen Variablen
gelost werden.

6.2. Direkte Beweise

Bei einem direktem Beweis wird die Aussage aus bereits zuvor bewiesenen Aussagen oder
aus (per Definition) als wahr vorausgesetzten Aussagen gefolgert. Nicht weiter beweisbare
Aussagen nennen wir Aziome. 3

Ein direkter Beweis (engl. direct proof) beginnt hdufig mit dem zu Zeigenden und endet
mit, einer wahren Aussage. Wie wir in Abschnitt 3.2 gesehen haben, kann man aber aus
jeder Aussage eine wahre Aussage machen. Im Falle einer Gleichung kann man z.B. einfach
beide Seiten mit 0 multiplizieren.

Um einen korrekten Beweis zu fithren, muss man die ganze Zeit Aquivalenzumformungen
benutzen, denn dann kann man die Kette von Aussagen von unten lesen und von einer
als wahr bekannten Aussage zu der zu beweisenden Aussage kommen. In der Sprache der
Aussagenlogik heifit das: wir wollen Aussage A beweisen und zeigen A < B < ... < w.
Prima, denn dann gilt insbesondere auch w = ... = B = A und das wollten wir zeigen.

In Lehrbiichern findet sich auch oft die schénere Darstellung, in der aus einer bekannten
wahren Aussage durch Umformungen das zu Zeigende hergeleitet wird. Dieser Weg ist
natiirlich auch richtig und gibt zusétzlich Punkte in der B-Note. Das entspricht dann
ebenso zu zeigen, dassw = ... = B = A.

Als Beispiel nennen wir die wohlbekannten binomischen Formeln:

Seien a, b € R. Dann gilt:

(a+b)? = a® + 2ab+ b?,
(a —b)? = a® — 2ab + b?,
(a+b)(a—b) = a® - V°.

Beispiel 6.2.1: Wir beweisen jetzt die erste binomische Formel mittels Termumformung.
D.h., eine der beiden Seiten der Gleichung verdndert sich nicht, wihrend auf der anderen
Seite Aquivalenzumformungen gemacht werden.

(a4 b)?* =a® +2ab+b?
(a+b)(a+b)=
ala+0b) +bla+b) =
aa + ab+ ba + bb =
a?+ab+ab+b* =
a? + 2ab + b* = a? + 2ab + b O

31Die Axiome der wohlbekannten reellen Zahlen R werden wir in Abschnitt ?? genauer kennenlernen.
35Das Zeichen “00” oder auch “M” findet man oft, um das Ende eines Beweises zu kennzeichnen. “Q.E.D.
(quod erat demonstrandum) findet sich heute selten.
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Beispiel 6.2.2: Als weiteres Beispiel beweisen wir jetzt die Partialsumme der geometrischen

Reihe.
Sei R 3 a # 1 und n € Ny. Dann gilt

n ) _ n+1
Z:azzlla
i=0 —a
Beweis:
1— n+1
= +al+... o=
1—a
& I+a+...+a")(1—-a)=1-a""
s (Q4+a+...+a")—al+a+...+a")=1—a"
& l14a+...4+a " —a—-a*—...—a"=1-qg"!
Alle Summanden auBer 1 und a™*! kiirzen sich raus.
& 1—ag"tl=1—qg"! O

Alle Beweise, die wir bisher gesehen haben, sind direkte Beweise.

Aufgabe 6.2.1: Beweisen Sie durch einen direkten Beweis:
a) Das Quadrat einer geraden Zahl ist gerade.

b) Das Quadrat einer ungeraden Zahl ist ungerade.
Aufgabe 6.2.2: Beweisen Sie den Satz des Pythagoras grafisch.

Aufgabe 6.2.3: Das Kreuzprodukt zweier Vektoren a und b ist definiert durch

ap b1 asbz — agbo
axb= as | X b2 = a3b1 — a163
as b3 arby — azby

Beweisen oder widerlegen Sie:
a) Das Kreuzprodukt ist assoziativ.

b) Das Kreuzprodukt ist kommutativ.

6.3. Fallunterscheidung

Eine Technik, die oft zur Anwendung kommt, ist die (vollstindige) Fallunterscheidung
(engl. proof by exhaustion):

Beispiel 6.3.1:

Behauptung: Das Produkt zweier natiirlicher Zahlen a, b ist genau dann ungerade, wenn
sowohl a als auch b ungerade sind.
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Beweis: Was wir zeigen miissen, ist, dass das Produkt zweier ungeraden Zahlen ungerade
ist und dies in keinem anderen Fall so ist.

Erster Fall: a, b € N sind beide gerade. Dann gibt es k, £ € N mit den Eigenschaften
a=2k, b=2L

Das Produkt a - b ist dann
a-b=2k-20=2(2kt).

Somit ist das Produkt gerade.

Zweiter Fall: Seien a, b € N beide ungerade. Dann existieren k, £ € N und es gilt
a=2k—-1, b=20-1.
Das Produkt a - b ist dann
a-b=2k—-1)-(20—1) =4kl —2k —20+1 =22kl — k —0) + 1.
Da 2kl — k — £ € N, ist 2(2k{ — k — ) gerade. Damit ist das Produkt ungerade.

Dritter Fall: Genau eine der beiden Zahlen a, b ist gerade, die andere ist ungerade. Ohne
Beschrénkung der Allgemeinheit kénnen wir annehmen, dass ¢ € N ungerade ist und b € N
gerade. Sonst konnten wir a und b austauschen, da die Multiplikation in R kommutativ ist.

Dann gibt es k, £ € N und wir kénnen a und b schreiben als
a=2k—-1, b=2(
Das Produkt a - b ist dann
a-b=(2k—1)-(20) =4kl — 20 = 2(2kl — 0).
Das Produkt ist also gerade.

Weitere Fille existieren nicht. Damit ist die Aussage bewiesen. O

Wir haben bei der Behandlung des dritten Falles geschrieben “ohne Beschriankung der
Allgemeinheit”, kurz “0.B.d.A.” (engl. without loss of generality). Diese Formulierung
benutzt man, wenn es ausreichend ist, nur einen von mehreren Féllen zu betrachten.
Allerdings sollte es offensichtlich sein (im Wortsinne: jedermann klar), dass das zu Zeigende
0.B.d.A. gilt oder man muss eine kurze Erklarung angeben, warum.

Beispiel 6.3.2: Fiir welche z € R gilt:
r-x=x+x?
Wir rechnen es einfach aus:
z? = 2z.

Damit wir im néchsten Schritt durch = dividieren kénnen, miissen wir den x # 0 fordern.
Wir betrachen den Fall x = 0 spéter getrennt.

r=2

Der Fall x = 0 16st die Gleichung aber auch, wovon wir uns durch Einsetzen {iberzeugen
kénnen. Also sind die Lésungen 0 und 2. O
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6.4. Indirekte Beweise

Um einen indirekten Beweis (engl. proof by contradiction or reductio ad absurdum) zu
fithren, behaupten wir das Gegenteil der zu beweisende Aussage und leiten daraus einen
Widerspruch her. Darum nennt man einen solchen Beweis auch Widerspruchsbeweis.

Beachten Sie, dass es bei einem Widerspruchsbeweis ausreicht, Implikationen zu benutzen.
Aussagenlogisch wollen zeigen, dass A gilt. Dafiir nehmen wir an, dass —A gilt und fithren
das zu einem Widerspruch: —A = f. Nach Abschnitt 3.3 kénnen wir den Implikationspfeil
umkehren, wenn wir beide Seiten negieren. Damit erhalten wir —=f = ——A, also w = A.
Voila!

Beispiel 6.4.1: Wir werden die Irrationalitit von v/2 zeigen, d.h., v/2 ¢ Q. Dafiir miissen
wir zeigen, dass es keine Zahlen a, b € Z, b # 0 gibt, fiir die a/b = /2 gilt. Wir verwenden
das Prinzip des Widerspruchsbeweises: wir nehmen also an, dass solche Zahlen existieren
und zeigen dann, dass dies zu einem Widerspruch fiihrt.

0O.B.d.A. kénnen wir annehmen, dass a und b teilerfremd sind, d.h., dass es kein ¢ € Z gibt,
welches sowohl a als auch b teilt. Falls ein solches ¢ existierte, konnten wir a und b damit
kiirzen und diesen Prozess fortsetzen, bis sie teilerfremd sind, ohne dass sich der Wert
des Bruches andert. AuBerdem kénnen wir aufgrund der Positivitit von /2 annehmen,
dass sowohl a als auch b nicht-negativ sind, sonst kénnten wir durch —1 kiirzen. Aus dem
gleichen Grunde ist auch klar, dass a # 0.

Damit kénnen wir eine verfeinerte Behauptung treffen: es existieren keine a, b € N, die
teilerfremd sind und fiir die a/b = /2 gilt.

Fiir den Widerspruchsbeweis nehmen wir zuerst an, dass ein solches a/b existiert und
zeigen, dass dies zu einem Widerspruch fiihrt:

a
Z =49
b V2

Hier diirfen wir quadrieren, da a, b € N sind und somit Quadrieren eine Aquivalenzumfor-
mung ist.

2

2 =2
b2
a? = 2v°

Somit ist a? eine gerade Zahl.

In Abschnitt 6.3 haben wir gesehen, dass das Produkt zweier natiirlicher Zahlen genau
dann ungerade ist, wenn beide Zahlen ungerade sind. Die Umkehrung der Aussage gilt
ebenso (da dquivalent): das Produkt zweier natiirlicher Zahlen ist genau dann gerade,
wenn mindestens eine der beiden Zahlen gerade ist. Hier heiflen beide Zahlen a und da ihr
Produkt a - a = a? gerade ist, muss auch a gerade sein.

D.h., es gibt ein k£ € N mit @ = 2k und wir kénnen schreiben

a® = 2b?
(2k)? = 2b*
4k* = 2v?
2k? = b,
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Also muss auch b eine gerade Zahl sein und damit wéire 2 ein gemeinsamer Teiler von a
und b. Dies steht aber im Widerspruch zu unserer Annahme. 4 3

Damit haben wir gezeigt, dass die Annahme /2 € Q zu einem Widerspruch fithrt. Somit
muss die gegenteilige Aussage wahr sein und es folgt, dass v/2 ¢ Q. O

Aufgabe 6.4.1: Zeigen Sie durch Widerspruch: Wenn n? durch 2 teilbar ist, dann ist auch
n durch 2 teilbar.

6.5. Ringschluss

Angenommen, man hat mehrere Aussagen Ay, Ao, ..., A, gegeben und will zeigen, dass
alle diese Aussagen dquivalent sind, so reicht es zu zeigen, dass:

A1 = A2
A2 = A3
An—l = An

An = Al.

Dies kann sehr sinnvoll sein, da wir allein fiir die Aquivalenz von drei Aussagen A, B, C
sonst sechs einzelne Beweisrichtungen zeigen miissten:

A= B A=C B=C
B=A C=A C = B.

Mit Hilfe des Ringschlusses (auch zyklisches Beweisverfahren genannt) miissen wir nur die
minimale Anzahl an Implikationen zeigen, ndmlich

A= B B=C C = A

Jeder andere Ringschluss, der alle Aussagen enthélt, wire natiirlich auch legitim. Nach
Abschnitt 3.3 konnen die fehlenden Implikationen daraus konstruiert werden, beispielsweise
entsteht B = A aus B = C = A.

Das gilt natiirlich auch fiir den Fall von nur zwei Aussagen A; und As. Mdchte man zeigen,
dass A1 < A, gilt, dann ist es oft einfacher, einzeln die Implikation in jede Richtung zu
zeigen. Und wie in Abschnitt 3.2 gezeigt, gilt

(Al = AQ) = (A1 = Ay N Ay = Al).

Beispiel 6.5.1: Seien A, B Mengen. Dann sind folgende Aussagen dquivalent:
« ACB
« ANB=A
« AUB=B

Beweis: Wir zeigen, dass folgende Implikationen gelten:

36Einen Widerspruch in der Beweisfithrung zeigen wir gerne durch ein “4” an.
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e ACB=ANB=A:

Da A C B gilt, ist jedes Element aus A auch in B enthalten. Der Schnitt von A und
B enthélt alle Elemente, die in beiden Mengen liegen. Das ist offensichtlich die ganze
Menge A.

e ANB=A=AUB=28B:

Nach Voraussetzung besteht A nur aus Elementen, die auch in B enthalten sind.
Daher fiigt die Vereinigung mit A der Menge B keine weiteren Elemente hinzu.

e« AUB=B=ACB:

Da B gleich der Vereinigung von A und B ist, sind alle Elemente aus A auch in B
enthalten. Das ist die Definition von A C B.

Damit haben wir den Ringschluss vollendet und die Aquivalenz aller drei Aussagen gezeigt.
O

6.6. Volistandige Induktion

Vollsténdigen Induktion (engl. mathematical induction) ist ein sehr méchtiges Beweisver-
fahren, welches nicht so offensichtlich ist wie die bisherigen. Die Idee dahinter ist die
folgende.

Sei eine Aussage A zu zeigen fiir alle moglichen Werte n € Z mit n > ng. Wir beweisen A
quasi einzeln fiir jeden Wert von n. Das klingt nach sehr viel — unendlich viel! — Arbeit.
Aber wir ordnen unsere Beweise so geschickt an, dass der Beweis fiir den Wert n + 1
ausnutzt, dass die Aussage fiir den Wert n schon gezeigt worden ist. Dann miissen wir nur
noch den Beweis fir den Anfangswert ng fiihren und erzeugen damit eine Beweiskette fiir
alle n > ng.

Sie kénnen sich das vorstellen wie den Dominoeffekt: 7 wenn der erste Dominostein fillt,
fallen alle dahinter auch um.

Wir beschreiben das Verfahren jetzt formal. Wir wollen zeigen, dass eine Aussage A(n)
gilt fiir jeden Wert n € Z mit n > ny.

Es geniigt, folgende Eigenschaften zu zeigen:
1. A(ngp) ist wahr.
2. VYn>ng: (A(n) = A(n+1)).
Daraus folgt, dass A(n) wahr ist fir alle n > ny.

Entsprechend unterteilt sich der Beweisvorgang bei der vollstdndigen Induktion in drei
Schritte:

1. Zuerst zeigen wir die zu beweisende Aussage beziiglich des Startwerts ng. Dies
bezeichnen wir als Induktionsanfang (oder kurz IA) (engl. base case or basis step).

2. Wir formulieren die Induktionsvoraussetzung (kurz IV) (engl. induction hypothesis).
Das ist die Aussage A(n), deren Richtigkeit wir im Folgenden annehmen und die wir
schon flir n = ng gezeigt haben.

3"Immer wieder schén: eins, zwei. ®
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3. Dann folgt der Induktionsschritt (IS) (engl. inductive step): aus der Induktionsvor-
aussetzung beweisen wir die Induktionsbehauptung: da die zu beweisende Aussage
fiir n bereits bewiesen ist, beweisen wir nun die Giiltigkeit der Aussage fiir n + 1.

Beachten Sie:

e Es ist entscheidend, dass n € Z ist und nicht evtl. € R. Sonst wiirden Sie die Aussage
A(n) eben nur fiir einige ganzzahlige Werte von n beweisen, aber nicht fiir alle n > nqg.

o Ebenso wichtig ist, dass Sie im Induktionsschritt nur auf Werte von n zuriickgreifen,
fur die die Aussagen bereits bewiesen ist. Es gibt Beweise, die benutzen die zwei
vorherigen Werte von n. In solch einem Fall miissten Sie auch fiir zwei Startwerte
die Aussage beweisen, d.h., A(n) A A(n+ 1) = A(n + 2).

Beispiel 6.6.1: Wir beweisen die Gaufische Summenformel: 3*

Behauptung: Sei n € N. Dann gilt

Xn:, n(n+1)
i=——".
; 2
=1

Beweis: Der Induktionsanfang ist leicht nachzurechnen. Fir n =1 gilt

1
Zizlzw_ v
i=1 2

In der Induktionsvoraussetzung gehen wir davon aus, dass die Aussage fir n bereits
bewiesen ist. Wir zeigen im Induktionsschritt, dass die Aussage auch fir n + 1 wahr ist.

n+1 n
i=(>i)+n+1
=1 =1
1
- "("2ﬂ+n+1 (nach IV)
_ n4+n  2n+2
2 2
 n*+3n+2
N 2
_ (n+1)(n+2)
=

Somit haben wir gezeigt, dass A(n) = A(n + 1). Da wir A(1) gezeigt haben, gilt die
Aussage somit fiir alle n € N. O

Beispiel 6.6.2: Ein weiteres klassisches Beispiel, welches man mit vollstandiger Induktion
beweisen kann, ist die Aussage, dass die Summe der ersten n ungeraden natiirlichen Zahlen
gleich n? ist.

38Carl Friedrich GauB, deutscher Mathematiker, Astronom, Geodéat und Physiker, 1777-1855 und einer der
bedeutendsten Mathematiker aller Zeiten. Er ist auf dem alten 10 Mark-Schein zu sehen, zusammen
mit Graph und Formel der Gauf3schen Normalverteilung.
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Behauptung: Sei n € N. Dann gilt

Beweis: Der Induktionsanfang ist wiederum leicht iberpriift: Fir n =1 ist

21:(22'—1):(2-1—1):1:12. v

i=1

Wir beweisen im Induktionsschritt die Aussage fiir n + 1 unter der Annahme, dass sie fiir
n bereits bewiesen ist:

n+1 n
i(%— 1)=> (2i-1)+2(n+1) -1
i=1 i=1

Hier haben wir wieder den letzten Summanden aus der Summe gezogen und einzeln ans
Ende geschrieben. Jetzt verwenden wir die Induktionsvoraussetzung;:

=n?+2n+1)—1.
=n?4+2m+2-1
=n?+2n +1.

Nun wenden wir die erste binomische Formel an und erhalten

=(n+1)>%
Damit ist die Aussage bewiesen. O

Beispiel 6.6.3: Jetzt zeigen wir noch, dass fiir n € Ng der Ausdruck n® —n durch 5 teilbar
ist.

Induktionsanfang: Fiir n = 0 steht da: 0° =0 =0=5-0. 0 ist durch 5 teilbar.
Induktionsschritt: Wir kénnen annehmen, dass n® —n durch 5 teilbar ist und wollen zeigen,

dass (n +1)° — (n + 1) ebenfalls durch 5 teilbar ist.

(n+1°—(n+1)=
n® 4+ 5nt +10n3 +10n® +5n+1—-n—1=
n® —n+5nt +10n3 + 10n% + 5n =
n® —n + 5(n4+2n3—|—2n2+n)
——
nach IV durch 5 teilbar

Da beide Summanden durch 5 teilbar sind, ist die Summe durch 5 teilbar. O

Beispiel 6.6.4: In diesem Beispiel beweisen wir eine Ungleichung.
Zu zeigen: n? < 2" firn € N, n > 4.

Induktionsanfang bei n = 5: 25 < 32 — stimmt schon mal.
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Induktionsvoraussetzungen:

n? < 2m,
n > 4.

Induktionsschritt n — (n + 1):

(n+1)% < 2n+1
(n+1)2<2.2"
Wir verschérfen die Aussage, indem wir die IV benutzen:
(n+1)% < 2-n?
n?+2n+1 < n?+n?
on+1<n?
1<n®-2n
2<n®—2n+1
2 < (n—1)>
V2<n—1
V24+1<n

Das gilt nach Voraussetzung. O

Es existiert eine gewisse Ahnlichkeit zwischen dem Prinzip der Induktion und dem der
Rekursion. Auch bei der Rekursion wird iiblicherweise ein Problem auf eine kleinere Version
seiner selbst zurtickgefiihrt und im Endeffekt auf einen (einfachen) Basisfall.

Aufgabe 6.6.1: Zeigen Sie mittels vollstadndiger Induktion:
a) B+ 4334 +n—1P3+n"=(in-(n+1)°
b) 1+3+5+..+(2n—1)=n?

c) Hlé(l—ﬁ):%.(pr%)
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A. Losungen zu den Aufgaben

Aufgabe 2.4.1:
a) Sip(~1+5-1)
b) 30, ¢
Aufgabe 3.3.1:

Mit einem NAND oder NOR: daraus kann man ein
NOT machen (NOT(a) = NAND(a,a)), daraus
dann ein AND (AND(a,b) = NOT(NAND(a, b))
und daraus dann ein OR (OR(a,b) =
NOT(AND(NOT(a),NOT(b)))). Es geht analog
mit einem NOR als elementare Operation.

Aufgabe 3.3.2:
a)

(A=B)V(A=0C)=
(FAVB)V(mAVC) =
-AvVCVB=
-AV(CVB)=
A= (BVC) O
b)
(A= B)A(A=C) =
(FAVB)A(RAVC) =
(FAVB)A=A) V((mAVB)AC) =
-A
“AV(mAANC) V(BAC) =
R a—
~AV(BAC) =
A= (BAC) O
Aufgabe 3.2.1:
a) ANB
b) AA-B
¢) "AN-B
d) AvB
e) (AVB)A(A = —-B) oder (AVB)A—(AAB)
f) B= A

Aufgabe 3.5.1:

a) Ve e N:Vy e N:Vz e N:
r+z<y+z)

(z <y=
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b) -(3n >2:3xr e N:JyeN:3ze N:
$7z+y7L:Zn)

c) Sei P die Menge der Primzahlen. Vo > 2:
2|lz=3IpeP:FgeP:2=p+q)

Aufgabe 3.5.2: 3=2q
BlyyANz #yAVz:

:B(a) =3z : 3y : (B(z) A
(B(z) = (z =2V z=y))

Aufgabe 3.6.1:

a) Es existiert ein Student, der nicht Infor-
matik studiert und nicht doof ist.

b) Fiir alle geraden Zahlen gilt: Sie sind Sum-
me zweier Primzahlen.

Aufgabe 3.6.2:

—h) Behauptungen a), b), ¢), d) und f) wider-
legen die Aussage.

i) Wir negieren die Aussage “Jeder blaue
Zwerg mag Schokolade” und zeigen, dass
dies unter der Voraussetzung “Kein Zwerg
mag Schokolade”, gilt.

—(Jeder blaue Zwerg mag Schokolade)

=(Vz: (B(2) = 5(2)))
—(Vz: (=B(2) vV 5(2)))
Jz:=(=B(2) v 5(2))
Bz (BN 25(6))
bV vt
Jz : (B(z) A wahr)
Jdz: B(z) O
D.h., entgegen der Intuition ist diese Aus-

sage nur wahr, falls es blaue Zwerge iiber-
haupt gibt.

Aufgabe 4.1.1:

a) {1,2,3}
b) {-1,1}
c) Q\{0}
d) {0,1,4,9,16,25, 36,49, 64,81}

Aufgabe 4.3.1:

a) falsch
b) wahr



c¢) wahr
d) wahr
e) falsch
f) falsch
g) wahr
h) falsch
i) wahr

j) falsch

a) Falsch. Gegenbeispiel:

1 0 1
a=|0],b=(1],e=1]1

0 0 1
(axb)xc

0 -1 0

0 1 + 1] =

1 0 0
ax (bxec)

b) Nein. Nachrechnen fiir beliebige =, y € R3,

r#0#y, z#y.

Aufgabe 6.4.1:

Aufgabe 4.3.2:

a) Lagu: MlU
44277: MlU

(My 0 M,) € My UM, = M,
(M1 N MQ) o M,

b) MiN (Ml U Mg)
= (My N My) U (My N My)

= M, U (M, N M)
= M, nach a).

Aufgabe 4.4.1:

Sei M € P(A). Dann ist M C A nach Definition
der Potenzmenge. Nach Voraussetzung ist aber
A C B, alsoauch M C A C B, also auch M C B.
Das wiederum bedeutet, dass M € P(B) laut
Definition der Potenzmenge.

Aufgabe 5.1.1:
a) 1010104
b) 1111011,
c¢) 1100110004
d) 111001104
e) 101010015

f) 1100010001015

Aufgabe 6.2.1:

a) Sei n gerade = Jk € Z, sodass n = 2k.
(2k)? = 4k2. Das ist offensichtlich gerade.

b) Sei n ungerade = 3k € Z, sodass n = 2k —
1. (2k—1)2 = 4k — 4k +1 = 4(k* — k) +1

gerade

Aufgabe 6.2.3:
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b) TA:ng=1:

Annahme: 3k € Z : (2k — 1)3 ist durch 2 teilbar.
= 8k% —

8 + 12k? + 6k — 1 ist gerade. 4

Aufgabe 6.6.1:

2
a) [Aing=1:13=1= (1‘(1+1)) v

IV§:117(H§QY
IS:

n+1 n
Zi?’ ZZ PP (n+1)3
i=1

n+1>+m+n3

= u+) +(n+1)°

n?-(n+1)2+4(n+1)(n+1)32
4
(n2+4(n+1)) - (n+1)>
4

(0 +4An+4)-(n+1)?

B 4

“(n+1)?

4

:<m+mém+1»2 -

(n+2)?

1=12v
IV: >0 2 — 1 =n?
IS:

n+1

}:m—l_E:m—1+2n+U—1

=n’+2n+2-1
=n’+2n+1
=(n+1)>2 O
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IS:

(- )

1‘w2+1>>'<1‘m+1>2<n+2>>

nn+1)(n+2) nn+1)(n+2)
—2n+2(n+1)(n+2) - 4>
n(n+1)(n+2)

2(n +1)(n + 2) 4 )
(

—_
+

2n+2n2+6n+44>
n(n+1)(n+2)

(
(
(
(

2n +4
- (n+1)(n+2)>




B. Symbole

—-A Negation, NOT, “Nicht”

ANB Konjunktion, AND, “Und”

AV B Disjunktion, OR, “(inklusives) Oder”

A®B Exklusives Oder, X0R

A= B Implikation: Aus A folgt B

A< B Aquivalenz: A “genau dann” oder “dann und nur dann”, wenn B

A=B Aquivalenz logischer Aussagen, d.h. gleiche Wahrheitstabellen

Va : A(z) Allquantor: fir alle z gilt: A(z)

Jx: Az Existenzquantor: es gibt mindestens ein z, fiir das gilt: A(x)

Az : Ax) Einzigkeitsquantor: es gibt genau ein x, fir das gilt: A(z)

ac A a ist Element oder enthalten in der Menge A

0 Die leere Menge {}

AUB Vereinigung der Mengen A und B: {z |z € AV z € B}

ANB Der Schnitt der Mengen A und B: {z |z € AAx € B}

A\ B Die Differenz der Mengen A und B: {z |z € ANz ¢ B}

A Das Komplement von A beziiglich einer Obermenge B: B A

ACB A ist (unechte) Teilmenge von B: Ve :x € A=z € B

ACB,AC B Aist echte Teilmenge von B: AC BANA#B

N Menge der natiirlichen Zahlen: {1,2,3,...}

Ny Menge der natiirlichen Zahlen mit 0: {0,1,2,3,...}

Z Ring der ganzen Zahlen: {0,+1,4+2,...}

Q Korper der rationalen Zahlen: {a/b|a € Z,b € N}

R Korper der reellen Zahlen

R-o {reR|x>0}

C Korper der komplexen Zahlen: {a + bi | a,b € R} mit i* = —1

[a, b] Abgeschlossenes Intervall: {z € R|a <z < b}, mit a, b€ R

(a,b) Offenes Intervall: {xr € R |a <z < b}, mit a, b€ R

la] Abrundungsfunktion: max{z € Z | z < a}, mit a € R

[a] Aufrundungsfunktion: min{x € Z | z > a}, mit a € R

preim(R) Urbildbereich der Relation R: {z | Jy : (x,y) € R}

im(R) Bildbereich der Relation R: {y | 3z : (z,y) € R}

dom(R) Vorbereich der Relation R

codom(R) Nachbereich der Relation R

f:A— B Funktion f mit Definitionsbereich A und Zeilbereich B

x— f(x) x wird abgebildet auf f(z)

aob Komposition von Funktionen oder allgemeine Verkniipfung

a~! Multiplikatives Inverses zu a

Rz] Polynomring in z iiber R, d.h. die Menge der Funktionen, die
darstellbar sind als ZieNo a;z" mit a; € R

amod d Modulo: Rest r der Division a/d mit
a,n,d,re€Z,d#0:a=n-d+r,0<r<|d

alb a € Z\ {0} teilt b € Z, also a mod b =0

atb a € Z\ {0} teilt b € Z nicht, also a mod b # 0

log, (x) Logarithmus von z zur Basis b

e Eulersche Zahl e = Y% 1/il = 2.718281828459 . .

Inz Natiirlicher Logarithmus von x zur Basis e: log,

O(f(n)) Asymptotischer Aufwand:

{t: N> R>p|JceRs0,n0 EN:Vn>ng:t(n) <c-f(n)}
Quod erat demonstrandum: Ende eines Beweises
Ende eines Beispiels

>0
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C. Griechisches Alphabet

Alpha
Beta
Gamma,
Delta
Epsilon
Zeta
Eta
Theta
Tota
Kappa
Lambda
My

Ny

Xi
Omikron
Pi

Rho
Sigma
Tau
Ypsilon
Phi

Chi

Psi
Omega

DI N O 2 ®Q
@o )

X

5 0MIT T > ©

o
DEHBRIAMITOSONZE>R—"O0ENEEB S ®E >

EexXS 229>
©

Es hilft beim Lesen und Verstehen von wissenschaftlichen Texten, die griechischen Buch-
staben aussprechen und schreiben zu kénnen.
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D. Rechenregeln

Briiche Exp, Log
e c_ac = 2.718281828459
b'd b-d o
a c a d ad @ "
AR ot -5
n=0

a® = exp(b - log(a))

log, (1) =0

log, (n) =1
Binome logy (- y) = log,(x) + log, (y)

x

a+0)? = a? + 2ab+ b logy, (;) = log, (z) — log, (y)

Yy
log, (z +y) = logy, () + log, (1 + ;)

a+b)-(a—b)=a" b logy (¢") = r - logy («)

<k) T (-R)H togy, () = — log ()

(g) B (Z) =1 logy (/) = logy (/™) = %logb(x)
SR U

(k) - (n - k) log, (6°) = @ — Ho@
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E. Potenz- und Wurzelgesetze

Der folgende Text stammt aus Wikipedia:

Um die nachfolgende Tabelle nicht zu iiberladen, betrachten wir nur Potenzen mit reellen
Basen, die ungleich 0 sind. Betrachtet man aber eines der unten aufgefithrten Gesetze mit
nur positiven Exponenten, dann ist es auch fiir Potenzen zur Basis 0 giiltig. Wenn von
rationalen Zahlen mit geraden oder ungeraden Nennern gesprochen wird, dann sind stets
die Nenner ihrer gekiirzten Bruchdarstellungen gemeint.

=1 fira #0
a "= air fir r € R, falls a > 0 ist;
fiir r € Q mit ungeradem Nenner, falls a < 0 ist.
an = Yam = fir n € Nund m € Z, falls a > 0 ist;
(Va)™ fir m € Z und ungerade n € N, falls a < 0 ist.
a’ts =a" - af fiir r, s € R, falls a > 0 ist;
arTs = 4 fiir r, s € Q mit ungeraden Nennern, falls a < 0 ist.

(a-b)"=a"-b" fir r € N, und fir » € Z, wenn a - b # 0;

flir r € R, falls a, b > 0 sind;

fiir r € Q mit ungeraden Nennern, falls mindestens eine der Zahlen
a, b negativ ist.

(%)T:‘g—r fiir r € Z mit r > 0 und b # 0 oder r < 0 und a # 0;

fir r € R, falls a, b > 0 sind;

fiir r € Q mit ungeraden Nennern, falls mindestens eine der Zahlen

a, b negativ ist.

(@) =a"* fiir r, s € Z, falls a # 0 ist;

fir r, s € R, falls a > 0 ist;

fiir r, s € Q mit ungeraden Nennern, falls a < 0 ist.

(a")® = —a"* fiir a < 0 und r, s € Q, falls » und r - s ungerade Nenner haben
und r - s einen ungeraden Zéahler hat.

Ist mindestens einer der Exponenten r, s irrational oder sind beide rational, aber hat
mindestens eine der Zahlen r oder r - s einen geraden Nenner, dann ist einer der Ausdriicke
(a")® oder a™* fiir a < 0 undefiniert. Ansonsten sind beide definiert und stimmen entweder
iiberein oder unterscheiden sich nur um ihr Vorzeichen. Fiir beliebige r, s, falls a > 0
ist, und flr ganze r, s, falls a # 0 ist, stimmen sie immer iiberein. Fiir a < 0 und nicht
ganzzahlige, aber rationale r, s sind diese beiden Falle moglich. Welcher Fall eintritt, hangt
von der Anzahl der Zweien in der Primzahlzerlegung des Zahlers von r und des Nenners
von s ab. Um das richtige Vorzeichen auf der rechten Seite der Formel (a")® = +a"* zu
erkennen, ist es hinreichend, in diese Formel a = —1 einzusetzen. Das Vorzeichen, mit
dem sie dann bei a = —1 giiltig ist, bleibt richtig fir alle a < 0 und gegebenem r, s. Gilt
(a")® = —a"* fiir a < 0, dann gilt (a")® = |a|"* fir alle a # 0 (und auch fir a = 0, falls
alle Exponenten positiv sind).

Zum Beispiel gilt ((—1)2)% =1 und (—1)2'% = —1. Darum ist Va2 = (QQ)% = a1 =—q
fiir alle a < 0 und somit v/a2 = |a| fiir alle reellen a giiltig.
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F. Programmieraufgaben

Falls Sie auf der Suche nach Ubungsaufgaben zum Programmieren sind, dann finden Sie
hier einige Anregungen. Die Liste ist grob sortiert nach steigendem Schwierigkeitsgrad.

e Umrechnung EUR in USD und zuriick

¢ Body-Mass-Index ausrechnen und Bewertung ausgeben

o Primfaktorzerlegung einer ganzen Zahl

e Primzahlen finden mit dem Sieb des des Eratosthenes

o Verifizierung eines Datums (Schaltjahre, etc.)

e Pseudo-Zufallszahlen generieren mit der LCM Methode

o ggT berechnen mit dem (erweiterten) Euklidischen Algorithmus

o Bindre Suche in einer schon sortieren Liste

e Zahl in rémischen Ziffern ausdriicken und zuriick

o Sortierter bindrer Baum (fiir beliebige Datentypen)

o Datum umrechnen in Sekunden seit 1.1.1970 und zurtick (mit Schaltjahren!)
e Priifziffernberchnung oder Uberpriifung einer IBAN

e Eigene Berechnung der Quadratwurzel durch Intervallschachtelung
e Sortierfunktion schreiben wie Bubble Sort oder Merge Sort

o Gedichte generieren (das konnen Sie beliebig aufwiandig machen)

¢ Deterministischen endlichen Automaten implementieren

o Taschenrechner mit Punkt-vor-Strichrechnung, der “10+2*5.5” rechnen kann
o Klasse zur komplexen Arithmetik (4, —, -, 1)

e Addition und Multiplikation von langen Zahlen

e Tic-Tac-Toe Spiel mit optimaler Strategie

o Karatsuba-Multiplikation von langen Zahlen

o Klasse zur Matrix-Arithmetik (4, —, -, Inverses)

Viele weitere Ideen finden Sie auch hier. Wenn Sie es gerne mathematisch haben, dann
gibt es bei Projekt Euler massenhaft Aufgaben. Die Hochschule Karlsruhe hat auch eine
schone Liste mit Aufgaben samt Tipps und Loésungen.

o1


http://www.mycsharp.de/wbb2/thread.php?threadid=80566
https://projecteuler.net/
http://www.home.hs-karlsruhe.de/~pach0003/informatik_1/aufgaben/java.html

G. Versionsgeschichte

Diese Ubersicht beschreibt die Verinderungen zwischen den einzelnen Versionen dieses
Skripts. Rein sprachliche oder kosmetische Anderungen sind nicht extra aufgefiihrt.

e v7.0
Intiale Version mit den Inhalten der ersten Woche
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